Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 13*x^1<=0
  • x+4>5*x
  • (1/3)^(x/2)>9
  • log(3.3)*3*(1-(7/5)*x)<1
  • Canonical form:
  • =0
  • Identical expressions

  • sin^ two -2sinxcosx+cos^2x<= zero
  • sinus of squared minus 2 sinus of x co sinus of e of x plus co sinus of e of squared x less than or equal to 0
  • sinus of to the power of two minus 2 sinus of x co sinus of e of x plus co sinus of e of squared x less than or equal to zero
  • sin2-2sinxcosx+cos2x<=0
  • sin²-2sinxcosx+cos²x<=0
  • sin to the power of 2-2sinxcosx+cos to the power of 2x<=0
  • sin^2-2sinxcosx+cos^2x<=O
  • Similar expressions

  • sin^2+2sinxcosx+cos^2x<=0
  • sin^2-2sinxcosx-cos^2x<=0

sin^2-2sinxcosx+cos^2x<=0 inequation

A inequation with variable

The solution

You have entered [src]
   2                           2        
sin (x) - 2*sin(x)*cos(x) + cos (x) <= 0
$$\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) + \cos^{2}{\left(x \right)} \leq 0$$
sin(x)^2 - 2*sin(x)*cos(x) + cos(x)^2 <= 0
Detail solution
Given the inequality:
$$\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) + \cos^{2}{\left(x \right)} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) + \cos^{2}{\left(x \right)} = 0$$
Solve:
$$x_{1} = - \frac{3 \pi}{4}$$
$$x_{2} = \frac{\pi}{4}$$
$$x_{1} = - \frac{3 \pi}{4}$$
$$x_{2} = \frac{\pi}{4}$$
This roots
$$x_{1} = - \frac{3 \pi}{4}$$
$$x_{2} = \frac{\pi}{4}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{3 \pi}{4} - \frac{1}{10}$$
=
$$- \frac{3 \pi}{4} - \frac{1}{10}$$
substitute to the expression
$$\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) + \cos^{2}{\left(x \right)} \leq 0$$
$$\left(- 2 \sin{\left(- \frac{3 \pi}{4} - \frac{1}{10} \right)} \cos{\left(- \frac{3 \pi}{4} - \frac{1}{10} \right)} + \sin^{2}{\left(- \frac{3 \pi}{4} - \frac{1}{10} \right)}\right) + \cos^{2}{\left(- \frac{3 \pi}{4} - \frac{1}{10} \right)} \leq 0$$
   2/1    pi\      2/1    pi\        /1    pi\    /1    pi\     
cos |-- + --| + sin |-- + --| - 2*cos|-- + --|*sin|-- + --| <= 0
    \10   4 /       \10   4 /        \10   4 /    \10   4 /     

but
   2/1    pi\      2/1    pi\        /1    pi\    /1    pi\     
cos |-- + --| + sin |-- + --| - 2*cos|-- + --|*sin|-- + --| >= 0
    \10   4 /       \10   4 /        \10   4 /    \10   4 /     

Then
$$x \leq - \frac{3 \pi}{4}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \frac{3 \pi}{4} \wedge x \leq \frac{\pi}{4}$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
    pi
x = --
    4 
$$x = \frac{\pi}{4}$$
x = pi/4
Rapid solution 2 [src]
 pi 
{--}
 4  
$$x\ in\ \left\{\frac{\pi}{4}\right\}$$
x in FiniteSet(pi/4)