Mister Exam

sin6x<0 inequation

A inequation with variable

The solution

You have entered [src]
sin(6*x) < 0
$$\sin{\left(6 x \right)} < 0$$
sin(6*x) < 0
Detail solution
Given the inequality:
$$\sin{\left(6 x \right)} < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(6 x \right)} = 0$$
Solve:
Given the equation
$$\sin{\left(6 x \right)} = 0$$
- this is the simplest trigonometric equation
with the change of sign in 0

We get:
$$\sin{\left(6 x \right)} = 0$$
This equation is transformed to
$$6 x = 2 \pi n + \operatorname{asin}{\left(0 \right)}$$
$$6 x = 2 \pi n - \operatorname{asin}{\left(0 \right)} + \pi$$
Or
$$6 x = 2 \pi n$$
$$6 x = 2 \pi n + \pi$$
, where n - is a integer
Divide both parts of the equation by
$$6$$
$$x_{1} = \frac{\pi n}{3}$$
$$x_{2} = \frac{\pi n}{3} + \frac{\pi}{6}$$
$$x_{1} = \frac{\pi n}{3}$$
$$x_{2} = \frac{\pi n}{3} + \frac{\pi}{6}$$
This roots
$$x_{1} = \frac{\pi n}{3}$$
$$x_{2} = \frac{\pi n}{3} + \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\frac{\pi n}{3} + - \frac{1}{10}$$
=
$$\frac{\pi n}{3} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(6 x \right)} < 0$$
$$\sin{\left(6 \left(\frac{\pi n}{3} - \frac{1}{10}\right) \right)} < 0$$
sin(-3/5 + 2*pi*n) < 0

one of the solutions of our inequality is:
$$x < \frac{\pi n}{3}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < \frac{\pi n}{3}$$
$$x > \frac{\pi n}{3} + \frac{\pi}{6}$$
Solving inequality on a graph
Rapid solution [src]
   /pi          pi\
And|-- < x, x < --|
   \6           3 /
$$\frac{\pi}{6} < x \wedge x < \frac{\pi}{3}$$
(pi/6 < x)∧(x < pi/3)
Rapid solution 2 [src]
 pi  pi 
(--, --)
 6   3  
$$x\ in\ \left(\frac{\pi}{6}, \frac{\pi}{3}\right)$$
x in Interval.open(pi/6, pi/3)