Given the inequality:
$$\sin{\left(2 x + \frac{\pi}{4} \right)} \geq \frac{\sin{\left(3 \pi \right)}}{4}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(2 x + \frac{\pi}{4} \right)} = \frac{\sin{\left(3 \pi \right)}}{4}$$
Solve:
Given the equation
$$\sin{\left(2 x + \frac{\pi}{4} \right)} = \frac{\sin{\left(3 \pi \right)}}{4}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$2 x + \frac{\pi}{4} = 2 \pi n + \operatorname{asin}{\left(0 \right)}$$
$$2 x + \frac{\pi}{4} = 2 \pi n - \operatorname{asin}{\left(0 \right)} + \pi$$
Or
$$2 x + \frac{\pi}{4} = 2 \pi n$$
$$2 x + \frac{\pi}{4} = 2 \pi n + \pi$$
, where n - is a integer
Move
$$\frac{\pi}{4}$$
to right part of the equation
with the opposite sign, in total:
$$2 x = 2 \pi n - \frac{\pi}{4}$$
$$2 x = 2 \pi n + \frac{3 \pi}{4}$$
Divide both parts of the equation by
$$2$$
$$x_{1} = \pi n - \frac{\pi}{8}$$
$$x_{2} = \pi n + \frac{3 \pi}{8}$$
$$x_{1} = \pi n - \frac{\pi}{8}$$
$$x_{2} = \pi n + \frac{3 \pi}{8}$$
This roots
$$x_{1} = \pi n - \frac{\pi}{8}$$
$$x_{2} = \pi n + \frac{3 \pi}{8}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \frac{\pi}{8}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{\pi}{8} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(2 x + \frac{\pi}{4} \right)} \geq \frac{\sin{\left(3 \pi \right)}}{4}$$
$$\sin{\left(2 \left(\pi n - \frac{\pi}{8} - \frac{1}{10}\right) + \frac{\pi}{4} \right)} \geq \frac{\sin{\left(3 \pi \right)}}{4}$$
sin(-1/5 + 2*pi*n) >= 0
but
sin(-1/5 + 2*pi*n) < 0
Then
$$x \leq \pi n - \frac{\pi}{8}$$
no execute
one of the solutions of our inequality is:
$$x \geq \pi n - \frac{\pi}{8} \wedge x \leq \pi n + \frac{3 \pi}{8}$$
_____
/ \
-------•-------•-------
x1 x2