Given the inequality:
$$\sin{\left(2 x \right)} \cos{\left(2 x \right)} \geq \frac{1}{4}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(2 x \right)} \cos{\left(2 x \right)} = \frac{1}{4}$$
Solve:
$$x_{1} = \operatorname{atan}{\left(-2 + 2 \sqrt{2 - \sqrt{3}} + \sqrt{3} \right)}$$
$$x_{2} = - \operatorname{atan}{\left(- \sqrt{3} + 2 \sqrt{2 - \sqrt{3}} + 2 \right)}$$
$$x_{3} = - \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)}$$
$$x_{4} = - \operatorname{atan}{\left(- 2 \sqrt{\sqrt{3} + 2} + \sqrt{3} + 2 \right)}$$
$$x_{1} = \operatorname{atan}{\left(-2 + 2 \sqrt{2 - \sqrt{3}} + \sqrt{3} \right)}$$
$$x_{2} = - \operatorname{atan}{\left(- \sqrt{3} + 2 \sqrt{2 - \sqrt{3}} + 2 \right)}$$
$$x_{3} = - \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)}$$
$$x_{4} = - \operatorname{atan}{\left(- 2 \sqrt{\sqrt{3} + 2} + \sqrt{3} + 2 \right)}$$
This roots
$$x_{3} = - \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)}$$
$$x_{2} = - \operatorname{atan}{\left(- \sqrt{3} + 2 \sqrt{2 - \sqrt{3}} + 2 \right)}$$
$$x_{4} = - \operatorname{atan}{\left(- 2 \sqrt{\sqrt{3} + 2} + \sqrt{3} + 2 \right)}$$
$$x_{1} = \operatorname{atan}{\left(-2 + 2 \sqrt{2 - \sqrt{3}} + \sqrt{3} \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{3}$$
For example, let's take the point
$$x_{0} = x_{3} - \frac{1}{10}$$
=
$$- \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)} - \frac{1}{10}$$
=
$$- \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(2 x \right)} \cos{\left(2 x \right)} \geq \frac{1}{4}$$
$$\sin{\left(2 \left(- \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)} - \frac{1}{10}\right) \right)} \cos{\left(2 \left(- \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)} - \frac{1}{10}\right) \right)} \geq \frac{1}{4}$$
/ / ___________\\ / / ___________\\
|1 | ___ / ___ || |1 | ___ / ___ ||
-cos|- + 2*atan\2 + \/ 3 + 2*\/ 2 + \/ 3 /|*sin|- + 2*atan\2 + \/ 3 + 2*\/ 2 + \/ 3 /| >= 1/4
\5 / \5 /
but
/ / ___________\\ / / ___________\\
|1 | ___ / ___ || |1 | ___ / ___ ||
-cos|- + 2*atan\2 + \/ 3 + 2*\/ 2 + \/ 3 /|*sin|- + 2*atan\2 + \/ 3 + 2*\/ 2 + \/ 3 /| < 1/4
\5 / \5 /
Then
$$x \leq - \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)} \wedge x \leq - \operatorname{atan}{\left(- \sqrt{3} + 2 \sqrt{2 - \sqrt{3}} + 2 \right)}$$
_____ _____
/ \ / \
-------•-------•-------•-------•-------
x3 x2 x4 x1
Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq - \operatorname{atan}{\left(\sqrt{3} + 2 + 2 \sqrt{\sqrt{3} + 2} \right)} \wedge x \leq - \operatorname{atan}{\left(- \sqrt{3} + 2 \sqrt{2 - \sqrt{3}} + 2 \right)}$$
$$x \geq - \operatorname{atan}{\left(- 2 \sqrt{\sqrt{3} + 2} + \sqrt{3} + 2 \right)} \wedge x \leq \operatorname{atan}{\left(-2 + 2 \sqrt{2 - \sqrt{3}} + \sqrt{3} \right)}$$