Given the inequality:
$$7^{x^{2} + 5 x} > 1$$
To solve this inequality, we must first solve the corresponding equation:
$$7^{x^{2} + 5 x} = 1$$
Solve:
$$x_{1} = -5$$
$$x_{2} = 0$$
$$x_{1} = -5$$
$$x_{2} = 0$$
This roots
$$x_{1} = -5$$
$$x_{2} = 0$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-5 + - \frac{1}{10}$$
=
$$- \frac{51}{10}$$
substitute to the expression
$$7^{x^{2} + 5 x} > 1$$
$$7^{\frac{\left(-51\right) 5}{10} + \left(- \frac{51}{10}\right)^{2}} > 1$$
51
---
100 > 1
7
one of the solutions of our inequality is:
$$x < -5$$
_____ _____
\ /
-------ο-------ο-------
x1 x2Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < -5$$
$$x > 0$$