Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 2x-1:5-x>_0
  • 6+12x≤0
  • (1/4)*(2^(x^2+x))^(1/6)>=1
  • 2x^2-5x^2+2>=0
  • Identical expressions

  • (one / two)^(two *x)-(one / two)^x- twelve < zero
  • (1 divide by 2) to the power of (2 multiply by x) minus (1 divide by 2) to the power of x minus 12 less than 0
  • (one divide by two) to the power of (two multiply by x) minus (one divide by two) to the power of x minus twelve less than zero
  • (1/2)(2*x)-(1/2)x-12<0
  • 1/22*x-1/2x-12<0
  • (1/2)^(2x)-(1/2)^x-12<0
  • (1/2)(2x)-(1/2)x-12<0
  • 1/22x-1/2x-12<0
  • 1/2^2x-1/2^x-12<0
  • (1 divide by 2)^(2*x)-(1 divide by 2)^x-12<0
  • Similar expressions

  • (1/2)^(2*x)-(1/2)^x+12<0
  • (1/2)^(2*x)+(1/2)^x-12<0

(1/2)^(2*x)-(1/2)^x-12<0 inequation

A inequation with variable

The solution

You have entered [src]
 -2*x    -x         
2     - 2   - 12 < 0
$$\left(- \left(\frac{1}{2}\right)^{x} + \left(\frac{1}{2}\right)^{2 x}\right) - 12 < 0$$
-(1/2)^x + (1/2)^(2*x) - 12 < 0
Detail solution
Given the inequality:
$$\left(- \left(\frac{1}{2}\right)^{x} + \left(\frac{1}{2}\right)^{2 x}\right) - 12 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(- \left(\frac{1}{2}\right)^{x} + \left(\frac{1}{2}\right)^{2 x}\right) - 12 = 0$$
Solve:
Given the equation:
$$\left(- \left(\frac{1}{2}\right)^{x} + \left(\frac{1}{2}\right)^{2 x}\right) - 12 = 0$$
or
$$\left(- \left(\frac{1}{2}\right)^{x} + \left(\frac{1}{2}\right)^{2 x}\right) - 12 = 0$$
Do replacement
$$v = \left(\frac{1}{4}\right)^{x}$$
we get
$$-12 - 2^{- x} + 2^{- 2 x} = 0$$
or
$$-12 - 2^{- x} + 2^{- 2 x} = 0$$
do backward replacement
$$\left(\frac{1}{4}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(4 \right)}}$$
$$x_{1} = -2$$
$$x_{2} = \frac{- \log{\left(3 \right)} + i \pi}{\log{\left(2 \right)}}$$
Exclude the complex solutions:
$$x_{1} = -2$$
This roots
$$x_{1} = -2$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-2 + - \frac{1}{10}$$
=
$$- \frac{21}{10}$$
substitute to the expression
$$\left(- \left(\frac{1}{2}\right)^{x} + \left(\frac{1}{2}\right)^{2 x}\right) - 12 < 0$$
 -2*(-21)    21         
 --------    --         
    10       10         
2         - 2   - 12 < 0

        10___      5 ___    
-12 - 4*\/ 2  + 16*\/ 2  < 0
    

but
        10___      5 ___    
-12 - 4*\/ 2  + 16*\/ 2  > 0
    

Then
$$x < -2$$
no execute
the solution of our inequality is:
$$x > -2$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
 -log(4)      
(--------, oo)
  log(2)      
$$x\ in\ \left(- \frac{\log{\left(4 \right)}}{\log{\left(2 \right)}}, \infty\right)$$
x in Interval.open(-log(4)/log(2), oo)
Rapid solution [src]
-log(4)     
-------- < x
 log(2)     
$$- \frac{\log{\left(4 \right)}}{\log{\left(2 \right)}} < x$$
-log(4)/log(2) < x