Mister Exam

Other calculators

(1/3)^x<1/sqrt(3) inequation

A inequation with variable

The solution

You have entered [src]
 -x     1  
3   < -----
        ___
      \/ 3 
$$\left(\frac{1}{3}\right)^{x} < \frac{1}{\sqrt{3}}$$
(1/3)^x < 1/(sqrt(3))
Detail solution
Given the inequality:
$$\left(\frac{1}{3}\right)^{x} < \frac{1}{\sqrt{3}}$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\frac{1}{3}\right)^{x} = \frac{1}{\sqrt{3}}$$
Solve:
Given the equation:
$$\left(\frac{1}{3}\right)^{x} = \frac{1}{\sqrt{3}}$$
or
$$- \frac{1}{\sqrt{3}} + \left(\frac{1}{3}\right)^{x} = 0$$
or
$$\left(\frac{1}{3}\right)^{x} = \frac{\sqrt{3}}{3}$$
or
$$\left(\frac{1}{3}\right)^{x} = \frac{\sqrt{3}}{3}$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{3}\right)^{x}$$
we get
$$v - \frac{\sqrt{3}}{3} = 0$$
or
$$v - \frac{\sqrt{3}}{3} = 0$$
Expand brackets in the left part
v - sqrt3/3 = 0

Divide both parts of the equation by (v - sqrt(3)/3)/v
v = 0 / ((v - sqrt(3)/3)/v)

do backward replacement
$$\left(\frac{1}{3}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}$$
$$x_{1} = \frac{\sqrt{3}}{3}$$
$$x_{1} = \frac{\sqrt{3}}{3}$$
This roots
$$x_{1} = \frac{\sqrt{3}}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{\sqrt{3}}{3}$$
=
$$- \frac{1}{10} + \frac{\sqrt{3}}{3}$$
substitute to the expression
$$\left(\frac{1}{3}\right)^{x} < \frac{1}{\sqrt{3}}$$
$$\left(\frac{1}{3}\right)^{- \frac{1}{10} + \frac{\sqrt{3}}{3}} < \frac{1}{\sqrt{3}}$$
        ___     ___
 1    \/ 3    \/ 3 
 -- - ----- < -----
 10     3       3  
3             

but
        ___     ___
 1    \/ 3    \/ 3 
 -- - ----- > -----
 10     3       3  
3             

Then
$$x < \frac{\sqrt{3}}{3}$$
no execute
the solution of our inequality is:
$$x > \frac{\sqrt{3}}{3}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
   /            /  ___\     \
   |            |\/ 3 |     |
   |        -log|-----|     |
   |            \  3  /     |
And|x < oo, ------------ < x|
   \           log(3)       /
$$x < \infty \wedge - \frac{\log{\left(\frac{\sqrt{3}}{3} \right)}}{\log{\left(3 \right)}} < x$$
(x < oo)∧(-log(sqrt(3)/3)/log(3) < x)
Rapid solution 2 [src]
     /  ___\      
     |\/ 3 |      
 -log|-----|      
     \  3  /      
(------------, oo)
    log(3)        
$$x\ in\ \left(- \frac{\log{\left(\frac{\sqrt{3}}{3} \right)}}{\log{\left(3 \right)}}, \infty\right)$$
x in Interval.open(-log(sqrt(3)/3)/log(3), oo)