Mister Exam

Other calculators

((1)/(sqrtx+1)-(sqrt2x-4))>0 inequation

A inequation with variable

The solution

You have entered [src]
    1           _____        
--------- + - \/ 2*x  + 4 > 0
  ___                        
\/ x  + 1                    
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} > 0$$
4 - sqrt(2*x) + 1/(sqrt(x) + 1) > 0
Detail solution
Given the inequality:
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} = 0$$
Solve:
$$x_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
$$x_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
This roots
$$x_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}\right)$$
=
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{22}{5}$$
substitute to the expression
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} > 0$$
$$\left(4 - \sqrt{2 \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{22}{5}\right)}\right) + \frac{1}{1 + \sqrt{\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{22}{5}}} > 0$$
                                                       _________________________________    
                                                      /                 _______________     
                         1                           /  44     ___     /           ___      
4 + ------------------------------------------- -   /   -- + \/ 2  + \/  33 + 18*\/ 2       
              _________________________________   \/    5                                   
             /                 _______________                                           > 0
            /         ___     /           ___                                               
           /   22   \/ 2    \/  33 + 18*\/ 2                                                
    1 +   /    -- + ----- + ------------------                                              
        \/     5      2             2                                                       
    

the solution of our inequality is:
$$x < \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
                         ______________ 
          ___     ___   /          ___  
    9   \/ 2    \/ 3 *\/  11 + 6*\/ 2   
[0, - + ----- + -----------------------)
    2     2                2            
$$x\ in\ \left[0, \frac{\sqrt{2}}{2} + \frac{\sqrt{3} \sqrt{6 \sqrt{2} + 11}}{2} + \frac{9}{2}\right)$$
x in Interval.Ropen(0, sqrt(2)/2 + sqrt(3)*sqrt(6*sqrt(2) + 11)/2 + 9/2)
Rapid solution [src]
   /                                 ______________\
   |                  ___     ___   /          ___ |
   |            9   \/ 2    \/ 3 *\/  11 + 6*\/ 2  |
And|0 <= x, x < - + ----- + -----------------------|
   \            2     2                2           /
$$0 \leq x \wedge x < \frac{\sqrt{2}}{2} + \frac{\sqrt{3} \sqrt{6 \sqrt{2} + 11}}{2} + \frac{9}{2}$$
(0 <= x)∧(x < 9/2 + sqrt(2)/2 + sqrt(3)*sqrt(11 + 6*sqrt(2))/2)