Given the inequality:
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} = 0$$
Solve:
$$x_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
$$x_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
This roots
$$x_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}\right)$$
=
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{22}{5}$$
substitute to the expression
$$\left(4 - \sqrt{2 x}\right) + \frac{1}{\sqrt{x} + 1} > 0$$
$$\left(4 - \sqrt{2 \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{22}{5}\right)}\right) + \frac{1}{1 + \sqrt{\frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{22}{5}}} > 0$$
_________________________________
/ _______________
1 / 44 ___ / ___
4 + ------------------------------------------- - / -- + \/ 2 + \/ 33 + 18*\/ 2
_________________________________ \/ 5
/ _______________ > 0
/ ___ / ___
/ 22 \/ 2 \/ 33 + 18*\/ 2
1 + / -- + ----- + ------------------
\/ 5 2 2
the solution of our inequality is:
$$x < \frac{\sqrt{2}}{2} + \frac{\sqrt{18 \sqrt{2} + 33}}{2} + \frac{9}{2}$$
_____
\
-------ο-------
x1