Given the inequality:
$$\left|{2 x - 4}\right| < 3$$
To solve this inequality, we must first solve the corresponding equation:
$$\left|{2 x - 4}\right| = 3$$
Solve:
For every modulo expressions in the equation
allow cases, when this expressions ">=0" or "<0",
solve the resulting equation.
1.$$2 x - 4 \geq 0$$
or
$$2 \leq x \wedge x < \infty$$
we get the equation
$$\left(2 x - 4\right) - 3 = 0$$
after simplifying we get
$$2 x - 7 = 0$$
the solution in this interval:
$$x_{1} = \frac{7}{2}$$
2.$$2 x - 4 < 0$$
or
$$-\infty < x \wedge x < 2$$
we get the equation
$$\left(4 - 2 x\right) - 3 = 0$$
after simplifying we get
$$1 - 2 x = 0$$
the solution in this interval:
$$x_{2} = \frac{1}{2}$$
$$x_{1} = \frac{7}{2}$$
$$x_{2} = \frac{1}{2}$$
$$x_{1} = \frac{7}{2}$$
$$x_{2} = \frac{1}{2}$$
This roots
$$x_{2} = \frac{1}{2}$$
$$x_{1} = \frac{7}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{1}{2}$$
=
$$\frac{2}{5}$$
substitute to the expression
$$\left|{2 x - 4}\right| < 3$$
$$\left|{-4 + \frac{2 \cdot 2}{5}}\right| < 3$$
16/5 < 3
but
16/5 > 3
Then
$$x < \frac{1}{2}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{1}{2} \wedge x < \frac{7}{2}$$
_____
/ \
-------ο-------ο-------
x2 x1