Mister Exam

Other calculators

|3*x+5|<20 inequation

A inequation with variable

The solution

You have entered [src]
|3*x + 5| < 20
$$\left|{3 x + 5}\right| < 20$$
|3*x + 5| < 20
Detail solution
Given the inequality:
$$\left|{3 x + 5}\right| < 20$$
To solve this inequality, we must first solve the corresponding equation:
$$\left|{3 x + 5}\right| = 20$$
Solve:
For every modulo expressions in the equation
allow cases, when this expressions ">=0" or "<0",
solve the resulting equation.

1.
$$3 x + 5 \geq 0$$
or
$$- \frac{5}{3} \leq x \wedge x < \infty$$
we get the equation
$$\left(3 x + 5\right) - 20 = 0$$
after simplifying we get
$$3 x - 15 = 0$$
the solution in this interval:
$$x_{1} = 5$$

2.
$$3 x + 5 < 0$$
or
$$-\infty < x \wedge x < - \frac{5}{3}$$
we get the equation
$$\left(- 3 x - 5\right) - 20 = 0$$
after simplifying we get
$$- 3 x - 25 = 0$$
the solution in this interval:
$$x_{2} = - \frac{25}{3}$$


$$x_{1} = 5$$
$$x_{2} = - \frac{25}{3}$$
$$x_{1} = 5$$
$$x_{2} = - \frac{25}{3}$$
This roots
$$x_{2} = - \frac{25}{3}$$
$$x_{1} = 5$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{25}{3} + - \frac{1}{10}$$
=
$$- \frac{253}{30}$$
substitute to the expression
$$\left|{3 x + 5}\right| < 20$$
$$\left|{\frac{\left(-253\right) 3}{30} + 5}\right| < 20$$
203     
--- < 20
 10     

but
203     
--- > 20
 10     

Then
$$x < - \frac{25}{3}$$
no execute
one of the solutions of our inequality is:
$$x > - \frac{25}{3} \wedge x < 5$$
         _____  
        /     \  
-------ο-------ο-------
       x2      x1
Solving inequality on a graph
Rapid solution 2 [src]
(-25/3, 5)
$$x\ in\ \left(- \frac{25}{3}, 5\right)$$
x in Interval.open(-25/3, 5)
Rapid solution [src]
And(-25/3 < x, x < 5)
$$- \frac{25}{3} < x \wedge x < 5$$
(-25/3 < x)∧(x < 5)