Mister Exam

Other calculators

|sinx|>0 inequation

A inequation with variable

The solution

You have entered [src]
|sin(x)| > 0
$$\left|{\sin{\left(x \right)}}\right| > 0$$
Abs(sin(x)) > 0
Detail solution
Given the inequality:
$$\left|{\sin{\left(x \right)}}\right| > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left|{\sin{\left(x \right)}}\right| = 0$$
Solve:
Given the equation
$$\left|{\sin{\left(x \right)}}\right| = 0$$
transform
$$\left|{\sin{\left(x \right)}}\right| - 1 = 0$$
$$\left|{\sin{\left(x \right)}}\right| - 1 = 0$$
Do replacement
$$w = \left|{\sin{\left(x \right)}}\right|$$
Move free summands (without w)
from left part to right part, we given:
$$w = 1$$
We get the answer: w = 1
do backward replacement
$$\left|{\sin{\left(x \right)}}\right| = w$$
substitute w:
$$x_{1} = 43.9822971502571$$
$$x_{2} = -97.3893722612836$$
$$x_{3} = -43.9822971502571$$
$$x_{4} = -72.2566310325652$$
$$x_{5} = -3760.48640634698$$
$$x_{6} = 81.6814089933346$$
$$x_{7} = -31.4159265358979$$
$$x_{8} = -59.6902604182061$$
$$x_{9} = -78.5398163397448$$
$$x_{10} = 97.3893722612836$$
$$x_{11} = -25.1327412287183$$
$$x_{12} = 9.42477796076938$$
$$x_{13} = 84.8230016469244$$
$$x_{14} = -21.9911485751286$$
$$x_{15} = -94.2477796076938$$
$$x_{16} = 6.28318530717959$$
$$x_{17} = -50.2654824574367$$
$$x_{18} = 28.2743338823081$$
$$x_{19} = -75.398223686155$$
$$x_{20} = -28.2743338823081$$
$$x_{21} = -56.5486677646163$$
$$x_{22} = -65.9734457253857$$
$$x_{23} = -91.106186954104$$
$$x_{24} = -285.884931476671$$
$$x_{25} = 50.2654824574367$$
$$x_{26} = -69.1150383789755$$
$$x_{27} = -100.530964914873$$
$$x_{28} = 56.5486677646163$$
$$x_{29} = -87.9645943005142$$
$$x_{30} = 40.8407044966673$$
$$x_{31} = 18.8495559215388$$
$$x_{32} = 650.309679293087$$
$$x_{33} = 100.530964914873$$
$$x_{34} = 62.8318530717959$$
$$x_{35} = -53.4070751110265$$
$$x_{36} = 94.2477796076938$$
$$x_{37} = -3.14159265358979$$
$$x_{38} = 21.9911485751286$$
$$x_{39} = 12.5663706143592$$
$$x_{40} = -427.256600888212$$
$$x_{41} = 34.5575191894877$$
$$x_{42} = -15.707963267949$$
$$x_{43} = 53.4070751110265$$
$$x_{44} = 65.9734457253857$$
$$x_{45} = 87.9645943005142$$
$$x_{46} = 59.6902604182061$$
$$x_{47} = -6.28318530717959$$
$$x_{48} = 75.398223686155$$
$$x_{49} = -37.6991118430775$$
$$x_{50} = -12.5663706143592$$
$$x_{51} = 31.4159265358979$$
$$x_{52} = -81.6814089933346$$
$$x_{53} = 78.5398163397448$$
$$x_{54} = 15.707963267949$$
$$x_{55} = 72.2566310325652$$
$$x_{56} = 37.6991118430775$$
$$x_{57} = -47.1238898038469$$
$$x_{58} = 0$$
$$x_{59} = -9.42477796076938$$
$$x_{60} = -34.5575191894877$$
$$x_{1} = 43.9822971502571$$
$$x_{2} = -97.3893722612836$$
$$x_{3} = -43.9822971502571$$
$$x_{4} = -72.2566310325652$$
$$x_{5} = -3760.48640634698$$
$$x_{6} = 81.6814089933346$$
$$x_{7} = -31.4159265358979$$
$$x_{8} = -59.6902604182061$$
$$x_{9} = -78.5398163397448$$
$$x_{10} = 97.3893722612836$$
$$x_{11} = -25.1327412287183$$
$$x_{12} = 9.42477796076938$$
$$x_{13} = 84.8230016469244$$
$$x_{14} = -21.9911485751286$$
$$x_{15} = -94.2477796076938$$
$$x_{16} = 6.28318530717959$$
$$x_{17} = -50.2654824574367$$
$$x_{18} = 28.2743338823081$$
$$x_{19} = -75.398223686155$$
$$x_{20} = -28.2743338823081$$
$$x_{21} = -56.5486677646163$$
$$x_{22} = -65.9734457253857$$
$$x_{23} = -91.106186954104$$
$$x_{24} = -285.884931476671$$
$$x_{25} = 50.2654824574367$$
$$x_{26} = -69.1150383789755$$
$$x_{27} = -100.530964914873$$
$$x_{28} = 56.5486677646163$$
$$x_{29} = -87.9645943005142$$
$$x_{30} = 40.8407044966673$$
$$x_{31} = 18.8495559215388$$
$$x_{32} = 650.309679293087$$
$$x_{33} = 100.530964914873$$
$$x_{34} = 62.8318530717959$$
$$x_{35} = -53.4070751110265$$
$$x_{36} = 94.2477796076938$$
$$x_{37} = -3.14159265358979$$
$$x_{38} = 21.9911485751286$$
$$x_{39} = 12.5663706143592$$
$$x_{40} = -427.256600888212$$
$$x_{41} = 34.5575191894877$$
$$x_{42} = -15.707963267949$$
$$x_{43} = 53.4070751110265$$
$$x_{44} = 65.9734457253857$$
$$x_{45} = 87.9645943005142$$
$$x_{46} = 59.6902604182061$$
$$x_{47} = -6.28318530717959$$
$$x_{48} = 75.398223686155$$
$$x_{49} = -37.6991118430775$$
$$x_{50} = -12.5663706143592$$
$$x_{51} = 31.4159265358979$$
$$x_{52} = -81.6814089933346$$
$$x_{53} = 78.5398163397448$$
$$x_{54} = 15.707963267949$$
$$x_{55} = 72.2566310325652$$
$$x_{56} = 37.6991118430775$$
$$x_{57} = -47.1238898038469$$
$$x_{58} = 0$$
$$x_{59} = -9.42477796076938$$
$$x_{60} = -34.5575191894877$$
This roots
$$x_{5} = -3760.48640634698$$
$$x_{40} = -427.256600888212$$
$$x_{24} = -285.884931476671$$
$$x_{27} = -100.530964914873$$
$$x_{2} = -97.3893722612836$$
$$x_{15} = -94.2477796076938$$
$$x_{23} = -91.106186954104$$
$$x_{29} = -87.9645943005142$$
$$x_{52} = -81.6814089933346$$
$$x_{9} = -78.5398163397448$$
$$x_{19} = -75.398223686155$$
$$x_{4} = -72.2566310325652$$
$$x_{26} = -69.1150383789755$$
$$x_{22} = -65.9734457253857$$
$$x_{8} = -59.6902604182061$$
$$x_{21} = -56.5486677646163$$
$$x_{35} = -53.4070751110265$$
$$x_{17} = -50.2654824574367$$
$$x_{57} = -47.1238898038469$$
$$x_{3} = -43.9822971502571$$
$$x_{49} = -37.6991118430775$$
$$x_{60} = -34.5575191894877$$
$$x_{7} = -31.4159265358979$$
$$x_{20} = -28.2743338823081$$
$$x_{11} = -25.1327412287183$$
$$x_{14} = -21.9911485751286$$
$$x_{42} = -15.707963267949$$
$$x_{50} = -12.5663706143592$$
$$x_{59} = -9.42477796076938$$
$$x_{47} = -6.28318530717959$$
$$x_{37} = -3.14159265358979$$
$$x_{58} = 0$$
$$x_{16} = 6.28318530717959$$
$$x_{12} = 9.42477796076938$$
$$x_{39} = 12.5663706143592$$
$$x_{54} = 15.707963267949$$
$$x_{31} = 18.8495559215388$$
$$x_{38} = 21.9911485751286$$
$$x_{18} = 28.2743338823081$$
$$x_{51} = 31.4159265358979$$
$$x_{41} = 34.5575191894877$$
$$x_{56} = 37.6991118430775$$
$$x_{30} = 40.8407044966673$$
$$x_{1} = 43.9822971502571$$
$$x_{25} = 50.2654824574367$$
$$x_{43} = 53.4070751110265$$
$$x_{28} = 56.5486677646163$$
$$x_{46} = 59.6902604182061$$
$$x_{34} = 62.8318530717959$$
$$x_{44} = 65.9734457253857$$
$$x_{55} = 72.2566310325652$$
$$x_{48} = 75.398223686155$$
$$x_{53} = 78.5398163397448$$
$$x_{6} = 81.6814089933346$$
$$x_{13} = 84.8230016469244$$
$$x_{45} = 87.9645943005142$$
$$x_{36} = 94.2477796076938$$
$$x_{10} = 97.3893722612836$$
$$x_{33} = 100.530964914873$$
$$x_{32} = 650.309679293087$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{5}$$
For example, let's take the point
$$x_{0} = x_{5} - \frac{1}{10}$$
=
$$-3760.48640634698 + - \frac{1}{10}$$
=
$$-3760.58640634698$$
substitute to the expression
$$\left|{\sin{\left(x \right)}}\right| > 0$$
$$\left|{\sin{\left(-3760.58640634698 \right)}}\right| > 0$$
0.0998334166469064 > 0

one of the solutions of our inequality is:
$$x < -3760.48640634698$$
 _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____          
      \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x5      x40      x24      x27      x2      x15      x23      x29      x52      x9      x19      x4      x26      x22      x8      x21      x35      x17      x57      x3      x49      x60      x7      x20      x11      x14      x42      x50      x59      x47      x37      x58      x16      x12      x39      x54      x31      x38      x18      x51      x41      x56      x30      x1      x25      x43      x28      x46      x34      x44      x55      x48      x53      x6      x13      x45      x36      x10      x33      x32

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < -3760.48640634698$$
$$x > -427.256600888212 \wedge x < -285.884931476671$$
$$x > -100.530964914873 \wedge x < -97.3893722612836$$
$$x > -94.2477796076938 \wedge x < -91.106186954104$$
$$x > -87.9645943005142 \wedge x < -81.6814089933346$$
$$x > -78.5398163397448 \wedge x < -75.398223686155$$
$$x > -72.2566310325652 \wedge x < -69.1150383789755$$
$$x > -65.9734457253857 \wedge x < -59.6902604182061$$
$$x > -56.5486677646163 \wedge x < -53.4070751110265$$
$$x > -50.2654824574367 \wedge x < -47.1238898038469$$
$$x > -43.9822971502571 \wedge x < -37.6991118430775$$
$$x > -34.5575191894877 \wedge x < -31.4159265358979$$
$$x > -28.2743338823081 \wedge x < -25.1327412287183$$
$$x > -21.9911485751286 \wedge x < -15.707963267949$$
$$x > -12.5663706143592 \wedge x < -9.42477796076938$$
$$x > -6.28318530717959 \wedge x < -3.14159265358979$$
$$x > 0 \wedge x < 6.28318530717959$$
$$x > 9.42477796076938 \wedge x < 12.5663706143592$$
$$x > 15.707963267949 \wedge x < 18.8495559215388$$
$$x > 21.9911485751286 \wedge x < 28.2743338823081$$
$$x > 31.4159265358979 \wedge x < 34.5575191894877$$
$$x > 37.6991118430775 \wedge x < 40.8407044966673$$
$$x > 43.9822971502571 \wedge x < 50.2654824574367$$
$$x > 53.4070751110265 \wedge x < 56.5486677646163$$
$$x > 59.6902604182061 \wedge x < 62.8318530717959$$
$$x > 65.9734457253857 \wedge x < 72.2566310325652$$
$$x > 75.398223686155 \wedge x < 78.5398163397448$$
$$x > 81.6814089933346 \wedge x < 84.8230016469244$$
$$x > 87.9645943005142 \wedge x < 94.2477796076938$$
$$x > 97.3893722612836 \wedge x < 100.530964914873$$
$$x > 650.309679293087$$
Solving inequality on a graph