Given the inequality:
$$\left|{\frac{\log{\left(5 \right)}}{\log{\left(0.2 \right)}}}\right| < \left|{\frac{\log{\left(x \right)}}{\log{\left(0.2 \right)}}}\right|$$
To solve this inequality, we must first solve the corresponding equation:
$$\left|{\frac{\log{\left(5 \right)}}{\log{\left(0.2 \right)}}}\right| = \left|{\frac{\log{\left(x \right)}}{\log{\left(0.2 \right)}}}\right|$$
Solve:
$$x_{1} = 5$$
$$x_{1} = 5$$
This roots
$$x_{1} = 5$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 5$$
=
$$4.9$$
substitute to the expression
$$\left|{\frac{\log{\left(5 \right)}}{\log{\left(0.2 \right)}}}\right| < \left|{\frac{\log{\left(x \right)}}{\log{\left(0.2 \right)}}}\right|$$
$$\left|{\frac{\log{\left(5 \right)}}{\log{\left(0.2 \right)}}}\right| < \left|{\frac{\log{\left(4.9 \right)}}{\log{\left(0.2 \right)}}}\right|$$
0.621334934559612*log(5) < 0.987447352170942
but
0.621334934559612*log(5) > 0.987447352170942
Then
$$x < 5$$
no execute
the solution of our inequality is:
$$x > 5$$
_____
/
-------ο-------
x1