Given the inequality:
$$\left|{\frac{\log{\left(x - 4 \right)}}{\log{\left(3 \right)}}}\right| < 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\left|{\frac{\log{\left(x - 4 \right)}}{\log{\left(3 \right)}}}\right| = 1$$
Solve:
$$x_{1} = 7$$
$$x_{1} = 7$$
This roots
$$x_{1} = 7$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 7$$
=
$$6.9$$
substitute to the expression
$$\left|{\frac{\log{\left(x - 4 \right)}}{\log{\left(3 \right)}}}\right| < 1$$
$$\left|{\frac{\log{\left(-4 + 6.9 \right)}}{\log{\left(3 \right)}}}\right| < 1$$
1.06471073699243
---------------- < 1
log(3) the solution of our inequality is:
$$x < 7$$
_____
\
-------ο-------
x1