Mister Exam

Other calculators

log(0,5(x-1))+log(0,5(x-2))>=-1 inequation

A inequation with variable

The solution

You have entered [src]
   /x - 1\      /x - 2\      
log|-----| + log|-----| >= -1
   \  2  /      \  2  /      
$$\log{\left(\frac{x - 2}{2} \right)} + \log{\left(\frac{x - 1}{2} \right)} \geq -1$$
log((x - 2)/2) + log((x - 1)/2) >= -1
Detail solution
Given the inequality:
$$\log{\left(\frac{x - 2}{2} \right)} + \log{\left(\frac{x - 1}{2} \right)} \geq -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(\frac{x - 2}{2} \right)} + \log{\left(\frac{x - 1}{2} \right)} = -1$$
Solve:
$$x_{1} = \frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2}$$
$$x_{1} = \frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2}$$
This roots
$$x_{1} = \frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{\sqrt{e + 16}}{2 \sqrt{e^{1}}} + \frac{3}{2}\right)$$
=
$$\frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{7}{5}$$
substitute to the expression
$$\log{\left(\frac{x - 2}{2} \right)} + \log{\left(\frac{x - 1}{2} \right)} \geq -1$$
$$\log{\left(\frac{-2 + \left(\frac{\sqrt{e + 16}}{2 \sqrt{e^{1}}} + \frac{7}{5}\right)}{2} \right)} + \log{\left(\frac{-1 + \left(\frac{\sqrt{e + 16}}{2 \sqrt{e^{1}}} + \frac{7}{5}\right)}{2} \right)} \geq -1$$
   /         ________  -1/2\      /      ________  -1/2\      
   |  3    \/ 16 + E *e    |      |1   \/ 16 + E *e    |      
log|- -- + ----------------| + log|- + ----------------| >= -1
   \  10          4        /      \5          4        /      
      

but
   /         ________  -1/2\      /      ________  -1/2\     
   |  3    \/ 16 + E *e    |      |1   \/ 16 + E *e    |     
log|- -- + ----------------| + log|- + ----------------| < -1
   \  10          4        /      \5          4        /     
     

Then
$$x \leq \frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2}$$
no execute
the solution of our inequality is:
$$x \geq \frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2}$$
         _____  
        /
-------•-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
       ________  -1/2     
 3   \/ 16 + E *e         
[- + ----------------, oo)
 2          2             
$$x\ in\ \left[\frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2}, \infty\right)$$
x in Interval(sqrt(E + 16)*exp(-1/2)/2 + 3/2, oo)
Rapid solution [src]
      ________  -1/2     
3   \/ 16 + E *e         
- + ---------------- <= x
2          2             
$$\frac{\sqrt{e + 16}}{2 e^{\frac{1}{2}}} + \frac{3}{2} \leq x$$
sqrt(E + 16)*exp(-1/2)/2 + 3/2 <= x