Mister Exam

Other calculators

log(x)^2+2*(x-18)^2+32<=16*log(x)+2*(36+16*x-x^2) inequation

A inequation with variable

The solution

You have entered [src]
   2                2                       /             2\
log (x) + 2*(x - 18)  + 32 <= 16*log(x) + 2*\36 + 16*x - x /
$$\left(2 \left(x - 18\right)^{2} + \log{\left(x \right)}^{2}\right) + 32 \leq 2 \left(- x^{2} + \left(16 x + 36\right)\right) + 16 \log{\left(x \right)}$$
2*(x - 18)^2 + log(x)^2 + 32 <= 2*(-x^2 + 16*x + 36) + 16*log(x)
Solving inequality on a graph