Mister Exam

Other calculators

logx^2+1(2*4^x-15*2^x+23)/(4^x-9*2^x+14)>=0 inequation

A inequation with variable

The solution

You have entered [src]
             x       x          
   2      2*4  - 15*2  + 23     
log (x) + ----------------- >= 0
             x      x           
            4  - 9*2  + 14      
$$\frac{\left(- 15 \cdot 2^{x} + 2 \cdot 4^{x}\right) + 23}{\left(- 9 \cdot 2^{x} + 4^{x}\right) + 14} + \log{\left(x \right)}^{2} \geq 0$$
(-15*2^x + 2*4^x + 23)/(-9*2^x + 4^x + 14) + log(x)^2 >= 0
Solving inequality on a graph