Mister Exam

Other calculators

log(x-1,-x^2+8*x-7)-1/16*log^2(x-1,(x-7)^2)>=2 inequation

A inequation with variable

The solution

You have entered [src]
                         2/              2\     
     log(x - 1)       log \x - 1, (x - 7) /     
------------------- - --------------------- >= 2
   /   2          \             16              
log\- x  + 8*x - 7/                             
$$\frac{\log{\left(x - 1 \right)}}{\log{\left(\left(- x^{2} + 8 x\right) - 7 \right)}} - \frac{\log{\left(x - 1 \right)}^{2}}{16} \geq 2$$
log(x - 1)/log(-x^2 + 8*x - 7) - log(x - 1, (x - 7)^2)^2/16 >= 2
Solving inequality on a graph