Given the inequality:
$$\left(x + 4\right) \log{\left(2 x \right)} \log{\left(x \right)} \left(2 - x\right) > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(x + 4\right) \log{\left(2 x \right)} \log{\left(x \right)} \left(2 - x\right) = 0$$
Solve:
$$x_{1} = -4$$
$$x_{2} = \frac{1}{2}$$
$$x_{3} = 1$$
$$x_{4} = 2$$
$$x_{1} = -4$$
$$x_{2} = \frac{1}{2}$$
$$x_{3} = 1$$
$$x_{4} = 2$$
This roots
$$x_{1} = -4$$
$$x_{2} = \frac{1}{2}$$
$$x_{3} = 1$$
$$x_{4} = 2$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-4 + - \frac{1}{10}$$
=
$$- \frac{41}{10}$$
substitute to the expression
$$\left(x + 4\right) \log{\left(2 x \right)} \log{\left(x \right)} \left(2 - x\right) > 0$$
$$\left(- \frac{41}{10} + 4\right) \log{\left(\frac{\left(-41\right) 2}{10} \right)} \log{\left(- \frac{41}{10} \right)} \left(2 - - \frac{41}{10}\right) > 0$$
/ log(41/5) pi*I\ / /41\\
61*|- --------- - ----|*|pi*I + log|--||
\ 10 10 / \ \10// > 0
----------------------------------------
10 Then
$$x < -4$$
no execute
one of the solutions of our inequality is:
$$x > -4 \wedge x < \frac{1}{2}$$
_____ _____
/ \ / \
-------ο-------ο-------ο-------ο-------
x1 x2 x3 x4Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -4 \wedge x < \frac{1}{2}$$
$$x > 1 \wedge x < 2$$