Given the inequality:
$$\log{\left(2 x + 4 \right)} > 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(2 x + 4 \right)} = 1$$
Solve:
$$x_{1} = -1$$
$$x_{2} = 4$$
$$x_{1} = -1$$
$$x_{2} = 4$$
This roots
$$x_{1} = -1$$
$$x_{2} = 4$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-1 + - \frac{1}{10}$$
=
$$- \frac{11}{10}$$
substitute to the expression
$$\log{\left(2 x + 4 \right)} > 1$$
$$\log{\left(\frac{\left(-11\right) 2}{10} + 4 \right)} > 1$$
log(9/5)
--------
/231\ > 1
log|---|
\100/
Then
$$x < -1$$
no execute
one of the solutions of our inequality is:
$$x > -1 \wedge x < 4$$
_____
/ \
-------ο-------ο-------
x1 x2