Mister Exam

Other calculators

log^27(9-x^2) inequation

A inequation with variable

The solution

You have entered [src]
   27/     2\    
log  \9 - x / > 0
$$\log{\left(9 - x^{2} \right)}^{27} > 0$$
log(9 - x^2)^27 > 0
Detail solution
Given the inequality:
$$\log{\left(9 - x^{2} \right)}^{27} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(9 - x^{2} \right)}^{27} = 0$$
Solve:
$$x_{1} = - 2 \sqrt{2}$$
$$x_{2} = 2 \sqrt{2}$$
$$x_{1} = - 2 \sqrt{2}$$
$$x_{2} = 2 \sqrt{2}$$
This roots
$$x_{1} = - 2 \sqrt{2}$$
$$x_{2} = 2 \sqrt{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- 2 \sqrt{2} - \frac{1}{10}$$
=
$$- 2 \sqrt{2} - \frac{1}{10}$$
substitute to the expression
$$\log{\left(9 - x^{2} \right)}^{27} > 0$$
$$\log{\left(9 - \left(- 2 \sqrt{2} - \frac{1}{10}\right)^{2} \right)}^{27} > 0$$
     /                    2\    
   27|    /  1        ___\ |    
log  |9 - |- -- - 2*\/ 2 | | > 0
     \    \  10          / /    
    

Then
$$x < - 2 \sqrt{2}$$
no execute
one of the solutions of our inequality is:
$$x > - 2 \sqrt{2} \wedge x < 2 \sqrt{2}$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Rapid solution 2 [src]
      ___      ___ 
(-2*\/ 2 , 2*\/ 2 )
$$x\ in\ \left(- 2 \sqrt{2}, 2 \sqrt{2}\right)$$
x in Interval.open(-2*sqrt(2), 2*sqrt(2))
Rapid solution [src]
   /     ___              ___\
And\-2*\/ 2  < x, x < 2*\/ 2 /
$$- 2 \sqrt{2} < x \wedge x < 2 \sqrt{2}$$
(-2*sqrt(2) < x)∧(x < 2*sqrt(2))