Given the inequality:
$$\log{\left(9 - x^{2} \right)}^{27} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(9 - x^{2} \right)}^{27} = 0$$
Solve:
$$x_{1} = - 2 \sqrt{2}$$
$$x_{2} = 2 \sqrt{2}$$
$$x_{1} = - 2 \sqrt{2}$$
$$x_{2} = 2 \sqrt{2}$$
This roots
$$x_{1} = - 2 \sqrt{2}$$
$$x_{2} = 2 \sqrt{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- 2 \sqrt{2} - \frac{1}{10}$$
=
$$- 2 \sqrt{2} - \frac{1}{10}$$
substitute to the expression
$$\log{\left(9 - x^{2} \right)}^{27} > 0$$
$$\log{\left(9 - \left(- 2 \sqrt{2} - \frac{1}{10}\right)^{2} \right)}^{27} > 0$$
/ 2\
27| / 1 ___\ |
log |9 - |- -- - 2*\/ 2 | | > 0
\ \ 10 / /
Then
$$x < - 2 \sqrt{2}$$
no execute
one of the solutions of our inequality is:
$$x > - 2 \sqrt{2} \wedge x < 2 \sqrt{2}$$
_____
/ \
-------ο-------ο-------
x1 x2