Mister Exam

Other calculators

log3^2x+2log3^2(5x-6)<=3log3(5x-6)*log3x inequation

A inequation with variable

The solution

You have entered [src]
   2             2                 3*log(5*x - 6)*log(3*x)
log (3)*x + 2*log (3)*(5*x - 6) <= -----------------------
                                            log(3)        
$$x \log{\left(3 \right)}^{2} + 2 \cdot \left(5 x - 6\right) \log{\left(3 \right)}^{2} \leq \frac{3 \log{\left(3 x \right)} \log{\left(5 x - 6 \right)}}{\log{\left(3 \right)}}$$
x*log(3)^2 + 2*(5*x - 1*6)*log(3)^2 <= 3*log(3*x)*log(5*x - 1*6)/log(3)
Detail solution
Given the inequality:
$$x \log{\left(3 \right)}^{2} + 2 \cdot \left(5 x - 6\right) \log{\left(3 \right)}^{2} \leq \frac{3 \log{\left(3 x \right)} \log{\left(5 x - 6 \right)}}{\log{\left(3 \right)}}$$
To solve this inequality, we must first solve the corresponding equation:
$$x \log{\left(3 \right)}^{2} + 2 \cdot \left(5 x - 6\right) \log{\left(3 \right)}^{2} = \frac{3 \log{\left(3 x \right)} \log{\left(5 x - 6 \right)}}{\log{\left(3 \right)}}$$
Solve:
$$x_{1} = \mathtt{\text{(1.2341443119377384+0.5013184797315792j)}}$$
$$x_{2} = \mathtt{\text{(1.2341443119377384-0.5013184797315792j)}}$$
Exclude the complex solutions:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
$$x_0 = 0$$
$$2 \left(\left(-1\right) 6 + 5 \cdot 0\right) \log{\left(3 \right)}^{2} + \log{\left(3 \right)}^{2} \cdot 0 \leq \frac{3 \log{\left(3 \cdot 0 \right)} \log{\left(\left(-1\right) 6 + 5 \cdot 0 \right)}}{\log{\left(3 \right)}}$$
       2          
-12*log (3) <= zoo
       

so the inequality is always executed