Given the inequality:
$$x \log{\left(3 \right)}^{2} + 2 \cdot \left(5 x - 6\right) \log{\left(3 \right)}^{2} \leq \frac{3 \log{\left(3 x \right)} \log{\left(5 x - 6 \right)}}{\log{\left(3 \right)}}$$
To solve this inequality, we must first solve the corresponding equation:
$$x \log{\left(3 \right)}^{2} + 2 \cdot \left(5 x - 6\right) \log{\left(3 \right)}^{2} = \frac{3 \log{\left(3 x \right)} \log{\left(5 x - 6 \right)}}{\log{\left(3 \right)}}$$
Solve:
$$x_{1} = \mathtt{\text{(1.2341443119377384+0.5013184797315792j)}}$$
$$x_{2} = \mathtt{\text{(1.2341443119377384-0.5013184797315792j)}}$$
Exclude the complex solutions:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
$$x_0 = 0$$
$$2 \left(\left(-1\right) 6 + 5 \cdot 0\right) \log{\left(3 \right)}^{2} + \log{\left(3 \right)}^{2} \cdot 0 \leq \frac{3 \log{\left(3 \cdot 0 \right)} \log{\left(\left(-1\right) 6 + 5 \cdot 0 \right)}}{\log{\left(3 \right)}}$$
2
-12*log (3) <= zoo
so the inequality is always executed