Given the inequality:
$$\frac{\log{\left(\left(x^{2} - 2 x\right) - 2 \right)}}{\log{\left(10 \right)}} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\log{\left(\left(x^{2} - 2 x\right) - 2 \right)}}{\log{\left(10 \right)}} = 0$$
Solve:
$$x_{1} = -1$$
$$x_{2} = 3$$
$$x_{1} = -1$$
$$x_{2} = 3$$
This roots
$$x_{1} = -1$$
$$x_{2} = 3$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$-1 + - \frac{1}{10}$$
=
$$- \frac{11}{10}$$
substitute to the expression
$$\frac{\log{\left(\left(x^{2} - 2 x\right) - 2 \right)}}{\log{\left(10 \right)}} \leq 0$$
$$\frac{\log{\left(-2 + \left(\left(- \frac{11}{10}\right)^{2} - \frac{\left(-11\right) 2}{10}\right) \right)}}{\log{\left(10 \right)}} \leq 0$$
/141\
log|---|
\100/ <= 0
--------
log(10)
but
/141\
log|---|
\100/ >= 0
--------
log(10)
Then
$$x \leq -1$$
no execute
one of the solutions of our inequality is:
$$x \geq -1 \wedge x \leq 3$$
_____
/ \
-------•-------•-------
x1 x2