Mister Exam

Other calculators

ln(x^10)>5 inequation

A inequation with variable

The solution

You have entered [src]
   / 10\    
log\x  / > 5
$$\log{\left(x^{10} \right)} > 5$$
log(x^10) > 5
Detail solution
Given the inequality:
$$\log{\left(x^{10} \right)} > 5$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(x^{10} \right)} = 5$$
Solve:
$$x_{1} = \frac{\left(-1 + \sqrt{5} - \sqrt{2} \sqrt{-5 - \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{2} = \frac{\left(-1 + \sqrt{5} + \sqrt{2} \sqrt{-5 - \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{3} = \frac{\left(1 + \sqrt{5} - \sqrt{2} \sqrt{-5 + \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{4} = \frac{\left(1 + \sqrt{5} + \sqrt{2} \sqrt{-5 + \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{5} = - \frac{\left(1 + \sqrt{5} + \sqrt{2} i \sqrt{5 - \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{6} = \frac{\left(- \sqrt{5} - 1 + \sqrt{2} \sqrt{-5 + \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{7} = \frac{\left(- \sqrt{5} + 1 - \sqrt{2} \sqrt{-5 - \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{8} = \frac{\left(- \sqrt{5} + 1 + \sqrt{2} \sqrt{-5 - \sqrt{5}}\right) e^{\frac{1}{2}}}{4}$$
$$x_{9} = - e^{\frac{1}{2}}$$
$$x_{10} = e^{\frac{1}{2}}$$
Exclude the complex solutions:
$$x_{1} = - e^{\frac{1}{2}}$$
$$x_{2} = e^{\frac{1}{2}}$$
This roots
$$x_{1} = - e^{\frac{1}{2}}$$
$$x_{2} = e^{\frac{1}{2}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- e^{\frac{1}{2}} - \frac{1}{10}$$
=
$$- e^{\frac{1}{2}} - \frac{1}{10}$$
substitute to the expression
$$\log{\left(x^{10} \right)} > 5$$
$$\log{\left(\left(- e^{\frac{1}{2}} - \frac{1}{10}\right)^{10} \right)} > 5$$
   /             10\    
   |/  1     1/2\  |    
log||- -- - e   |  | > 5
   \\  10       /  /    
    

one of the solutions of our inequality is:
$$x < - e^{\frac{1}{2}}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < - e^{\frac{1}{2}}$$
$$x > e^{\frac{1}{2}}$$
Solving inequality on a graph
Rapid solution [src]
  /      1/2   1/2    \
Or\x < -e   , e    < x/
$$x < - e^{\frac{1}{2}} \vee e^{\frac{1}{2}} < x$$
(exp(1/2) < x)∨(x < -exp(1/2))
Rapid solution 2 [src]
        1/2      1/2     
(-oo, -e   ) U (e   , oo)
$$x\ in\ \left(-\infty, - e^{\frac{1}{2}}\right) \cup \left(e^{\frac{1}{2}}, \infty\right)$$
x in Union(Interval.open(-oo, -exp(1/2)), Interval.open(exp(1/2), oo))