Mister Exam

Other calculators

lg^2(x)+2lg(10)(x)>3 inequation

A inequation with variable

The solution

You have entered [src]
   2                     
log (x) + 2*log(10)*x > 3
x2log(10)+log(x)2>3x 2 \log{\left(10 \right)} + \log{\left(x \right)}^{2} > 3
x*(2*log(10)) + log(x)^2 > 3
Detail solution
Given the inequality:
x2log(10)+log(x)2>3x 2 \log{\left(10 \right)} + \log{\left(x \right)}^{2} > 3
To solve this inequality, we must first solve the corresponding equation:
x2log(10)+log(x)2=3x 2 \log{\left(10 \right)} + \log{\left(x \right)}^{2} = 3
Solve:
x1=0.59161255434212x_{1} = 0.59161255434212
x2=0.262102533701829x_{2} = 0.262102533701829
x1=0.59161255434212x_{1} = 0.59161255434212
x2=0.262102533701829x_{2} = 0.262102533701829
This roots
x2=0.262102533701829x_{2} = 0.262102533701829
x1=0.59161255434212x_{1} = 0.59161255434212
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x2x_{0} < x_{2}
For example, let's take the point
x0=x2110x_{0} = x_{2} - \frac{1}{10}
=
110+0.262102533701829- \frac{1}{10} + 0.262102533701829
=
0.1621025337018290.162102533701829
substitute to the expression
x2log(10)+log(x)2>3x 2 \log{\left(10 \right)} + \log{\left(x \right)}^{2} > 3
0.1621025337018292log(10)+log(0.162102533701829)2>30.162102533701829 \cdot 2 \log{\left(10 \right)} + \log{\left(0.162102533701829 \right)}^{2} > 3
3.31067566481757 + 0.324205067403657*log(10) > 3

one of the solutions of our inequality is:
x<0.262102533701829x < 0.262102533701829
 _____           _____          
      \         /
-------ο-------ο-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
x<0.262102533701829x < 0.262102533701829
x>0.59161255434212x > 0.59161255434212
Solving inequality on a graph
02468-8-6-4-2100100