Given the inequality:
$$\frac{\log{\left(\left(2 \sqrt{x} + 3 x\right) - 2 \right)}}{\log{\left(\left(3 \sqrt{x} + 5 x\right) - 3 \right)}^{3}} \geq \frac{\log{\left(10 \right)} \frac{1}{\log{\left(27 \right)}}}{10 \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}}}$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\log{\left(\left(2 \sqrt{x} + 3 x\right) - 2 \right)}}{\log{\left(\left(3 \sqrt{x} + 5 x\right) - 3 \right)}^{3}} = \frac{\log{\left(10 \right)} \frac{1}{\log{\left(27 \right)}}}{10 \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}}}$$
Solve:
$$x_{1} = 33.6096678407414$$
$$x_{1} = 33.6096678407414$$
This roots
$$x_{1} = 33.6096678407414$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 33.6096678407414$$
=
$$33.5096678407414$$
substitute to the expression
$$\frac{\log{\left(\left(2 \sqrt{x} + 3 x\right) - 2 \right)}}{\log{\left(\left(3 \sqrt{x} + 5 x\right) - 3 \right)}^{3}} \geq \frac{\log{\left(10 \right)} \frac{1}{\log{\left(27 \right)}}}{10 \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}}}$$
$$\frac{\log{\left(-2 + \left(2 \sqrt{33.5096678407414} + 3 \cdot 33.5096678407414\right) \right)}}{\log{\left(-3 + \left(3 \sqrt{33.5096678407414} + 5 \cdot 33.5096678407414\right) \right)}^{3}} \geq \frac{\log{\left(10 \right)} \frac{1}{\log{\left(27 \right)}}}{10 \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}}}$$
log(3)
0.0333684186580993 >= ----------
10*log(27)the solution of our inequality is:
$$x \leq 33.6096678407414$$
_____
\
-------•-------
x1