Mister Exam

Other calculators

4(16^x-2*4^(x+1))^2+23*(16^x-2*4^(x+1))+112>=0 inequation

A inequation with variable

The solution

You have entered [src]
                  2                                 
  /  x      x + 1\       /  x      x + 1\           
4*\16  - 2*4     /  + 23*\16  - 2*4     / + 112 >= 0
$$\left(4 \left(16^{x} - 2 \cdot 4^{x + 1}\right)^{2} + 23 \left(16^{x} - 2 \cdot 4^{x + 1}\right)\right) + 112 \geq 0$$
4*(16^x - 2*4^(x + 1))^2 + 23*(16^x - 2*4^(x + 1)) + 112 >= 0