Given the inequality:
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} = 0$$
Solve:
$$x_{1} = -495921.623174481$$
$$x_{2} = -506032.64140321$$
$$x_{3} = 0.377080543676126$$
$$x_{1} = -495921.623174481$$
$$x_{2} = -506032.64140321$$
$$x_{3} = 0.377080543676126$$
This roots
$$x_{2} = -506032.64140321$$
$$x_{1} = -495921.623174481$$
$$x_{3} = 0.377080543676126$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$-506032.64140321 + - \frac{1}{10}$$
=
$$-506032.74140321$$
substitute to the expression
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} \geq 0$$
$$- \frac{5}{\left(\left(-506032.74140321\right) 4 - 1\right)^{2}} + \left(81^{-506032.74140321} + \frac{2}{25^{506032.74140321 \log{\left(5 \right)}}}\right) \geq 0$$
-506032.74140321*log(5)
-1.22037234503762e-12 + 2*25 >= 0
but
-506032.74140321*log(5)
-1.22037234503762e-12 + 2*25 < 0
Then
$$x \leq -506032.64140321$$
no execute
one of the solutions of our inequality is:
$$x \geq -506032.64140321 \wedge x \leq -495921.623174481$$
_____ _____
/ \ /
-------•-------•-------•-------
x2 x1 x3Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq -506032.64140321 \wedge x \leq -495921.623174481$$
$$x \geq 0.377080543676126$$