Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • logπ(3x+2)≤logπ(x–1)
  • (x+1)*(x+4)^2*(x-3)<=0
  • |-3x-7|>5
  • (x^2+6x+9)/(2-x)<=0
  • Canonical form:
  • =0
  • Identical expressions

  • eighty-one ^x+ two * twenty-five ^(x*log(five))- five /(4x- one)^ two >= zero
  • 81 to the power of x plus 2 multiply by 25 to the power of (x multiply by logarithm of (5)) minus 5 divide by (4x minus 1) squared greater than or equal to 0
  • eighty minus one to the power of x plus two multiply by twenty minus five to the power of (x multiply by logarithm of (five)) minus five divide by (4x minus one) to the power of two greater than or equal to zero
  • 81x+2*25(x*log(5))-5/(4x-1)2>=0
  • 81x+2*25x*log5-5/4x-12>=0
  • 81^x+2*25^(x*log(5))-5/(4x-1)²>=0
  • 81 to the power of x+2*25 to the power of (x*log(5))-5/(4x-1) to the power of 2>=0
  • 81^x+225^(xlog(5))-5/(4x-1)^2>=0
  • 81x+225(xlog(5))-5/(4x-1)2>=0
  • 81x+225xlog5-5/4x-12>=0
  • 81^x+225^xlog5-5/4x-1^2>=0
  • 81^x+2*25^(x*log(5))-5/(4x-1)^2>=O
  • 81^x+2*25^(x*log(5))-5 divide by (4x-1)^2>=0
  • Similar expressions

  • 81^x+2*25^(x*log(5))-5/(4x+1)^2>=0
  • 81^x+2*25^(x*log(5))+5/(4x-1)^2>=0
  • 81^x-2*25^(x*log(5))-5/(4x-1)^2>=0

81^x+2*25^(x*log(5))-5/(4x-1)^2>=0 inequation

A inequation with variable

The solution

You have entered [src]
  x       x*log(5)       5          
81  + 2*25         - ---------- >= 0
                              2     
                     (4*x - 1)      
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} \geq 0$$
2*25^(x*log(5)) + 81^x - 5/(4*x - 1)^2 >= 0
Detail solution
Given the inequality:
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} = 0$$
Solve:
$$x_{1} = -495921.623174481$$
$$x_{2} = -506032.64140321$$
$$x_{3} = 0.377080543676126$$
$$x_{1} = -495921.623174481$$
$$x_{2} = -506032.64140321$$
$$x_{3} = 0.377080543676126$$
This roots
$$x_{2} = -506032.64140321$$
$$x_{1} = -495921.623174481$$
$$x_{3} = 0.377080543676126$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$-506032.64140321 + - \frac{1}{10}$$
=
$$-506032.74140321$$
substitute to the expression
$$\left(2 \cdot 25^{x \log{\left(5 \right)}} + 81^{x}\right) - \frac{5}{\left(4 x - 1\right)^{2}} \geq 0$$
$$- \frac{5}{\left(\left(-506032.74140321\right) 4 - 1\right)^{2}} + \left(81^{-506032.74140321} + \frac{2}{25^{506032.74140321 \log{\left(5 \right)}}}\right) \geq 0$$
                            -506032.74140321*log(5)     
-1.22037234503762e-12 + 2*25                        >= 0
     

but
                            -506032.74140321*log(5)    
-1.22037234503762e-12 + 2*25                        < 0
    

Then
$$x \leq -506032.64140321$$
no execute
one of the solutions of our inequality is:
$$x \geq -506032.64140321 \wedge x \leq -495921.623174481$$
         _____           _____  
        /     \         /
-------•-------•-------•-------
       x2      x1      x3

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq -506032.64140321 \wedge x \leq -495921.623174481$$
$$x \geq 0.377080543676126$$
Solving inequality on a graph