Mister Exam

Other calculators

ctg(5x+(2pi)/(3))=<1 inequation

A inequation with variable

The solution

You have entered [src]
   /      2*pi\     
cot|5*x + ----| <= 1
   \       3  /     
$$\cot{\left(5 x + \frac{2 \pi}{3} \right)} \leq 1$$
cot(5*x + (2*pi)/3) <= 1
Detail solution
Given the inequality:
$$\cot{\left(5 x + \frac{2 \pi}{3} \right)} \leq 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(5 x + \frac{2 \pi}{3} \right)} = 1$$
Solve:
$$x_{1} = - \frac{\pi}{12}$$
$$x_{1} = - \frac{\pi}{12}$$
This roots
$$x_{1} = - \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\pi}{12} - \frac{1}{10}$$
=
$$- \frac{\pi}{12} - \frac{1}{10}$$
substitute to the expression
$$\cot{\left(5 x + \frac{2 \pi}{3} \right)} \leq 1$$
$$\cot{\left(5 \left(- \frac{\pi}{12} - \frac{1}{10}\right) + \frac{2 \pi}{3} \right)} \leq 1$$
   /1   pi\     
tan|- + --| <= 1
   \2   4 /     

but
   /1   pi\     
tan|- + --| >= 1
   \2   4 /     

Then
$$x \leq - \frac{\pi}{12}$$
no execute
the solution of our inequality is:
$$x \geq - \frac{\pi}{12}$$
         _____  
        /
-------•-------
       x1
Rapid solution 2 [src]
(-oo, oo)
$$x\ in\ \left(-\infty, \infty\right)$$
x in Interval(-oo, oo)
Rapid solution [src]
And(-oo < x, x < oo)
$$-\infty < x \wedge x < \infty$$
(-oo < x)∧(x < oo)