Mister Exam

ctg(3x)≥-1 inequation

A inequation with variable

The solution

You have entered [src]
cot(3*x) >= -1
$$\cot{\left(3 x \right)} \geq -1$$
cot(3*x) >= -1
Detail solution
Given the inequality:
$$\cot{\left(3 x \right)} \geq -1$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(3 x \right)} = -1$$
Solve:
Given the equation
$$\cot{\left(3 x \right)} = -1$$
- this is the simplest trigonometric equation
This equation is transformed to
$$3 x = \pi n + \operatorname{acot}{\left(-1 \right)}$$
Or
$$3 x = \pi n - \frac{\pi}{4}$$
, where n - is a integer
Divide both parts of the equation by
$$3$$
get the intermediate answer:
$$x = \frac{\pi n}{3} - \frac{\pi}{12}$$
$$x_{1} = \frac{\pi n}{3} - \frac{\pi}{12}$$
$$x_{1} = \frac{\pi n}{3} - \frac{\pi}{12}$$
This roots
$$x_{1} = \frac{\pi n}{3} - \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{3} - \frac{\pi}{12}\right) - \frac{1}{10}$$
=
$$\frac{\pi n}{3} - \frac{\pi}{12} - \frac{1}{10}$$
substitute to the expression
$$\cot{\left(3 x \right)} \geq -1$$
$$\cot{\left(3 \left(\frac{\pi n}{3} - \frac{\pi}{12} - \frac{1}{10}\right) \right)} \geq -1$$
    /3    pi\      
-cot|-- + --| >= -1
    \10   4 /      

the solution of our inequality is:
$$x \leq \frac{\pi n}{3} - \frac{\pi}{12}$$
 _____          
      \    
-------•-------
       x_1
Solving inequality on a graph
Rapid solution [src]
   /     pi       \
And|x <= --, 0 < x|
   \     4        /
$$x \leq \frac{\pi}{4} \wedge 0 < x$$
(0 < x)∧(x <= pi/4)
Rapid solution 2 [src]
    pi 
(0, --]
    4  
$$x\ in\ \left(0, \frac{\pi}{4}\right]$$
x in Interval.Lopen(0, pi/4)
The graph
ctg(3x)≥-1 inequation