Given the inequality:
$$\cos{\left(x \right)} \tan{\left(2 x \right)} < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} \tan{\left(2 x \right)} = 0$$
Solve:
$$x_{1} = 0$$
$$x_{2} = - \frac{\pi}{2}$$
$$x_{3} = \frac{\pi}{2}$$
$$x_{1} = 0$$
$$x_{2} = - \frac{\pi}{2}$$
$$x_{3} = \frac{\pi}{2}$$
This roots
$$x_{2} = - \frac{\pi}{2}$$
$$x_{1} = 0$$
$$x_{3} = \frac{\pi}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{\pi}{2} - \frac{1}{10}$$
=
$$- \frac{\pi}{2} - \frac{1}{10}$$
substitute to the expression
$$\cos{\left(x \right)} \tan{\left(2 x \right)} < 0$$
$$\cos{\left(- \frac{\pi}{2} - \frac{1}{10} \right)} \tan{\left(2 \left(- \frac{\pi}{2} - \frac{1}{10}\right) \right)} < 0$$
sin(1/10)*tan(1/5) < 0
but
sin(1/10)*tan(1/5) > 0
Then
$$x < - \frac{\pi}{2}$$
no execute
one of the solutions of our inequality is:
$$x > - \frac{\pi}{2} \wedge x < 0$$
_____ _____
/ \ /
-------ο-------ο-------ο-------
x2 x1 x3Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > - \frac{\pi}{2} \wedge x < 0$$
$$x > \frac{\pi}{2}$$