Mister Exam

cosx≤-0,2 inequation

A inequation with variable

The solution

You have entered [src]
cos(x) <= -1/5
$$\cos{\left(x \right)} \leq - \frac{1}{5}$$
cos(x) <= -1/5
Detail solution
Given the inequality:
$$\cos{\left(x \right)} \leq - \frac{1}{5}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = - \frac{1}{5}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = - \frac{1}{5}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
Or
$$x = \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
, where n - is a integer
$$x_{1} = \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
$$x_{2} = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
$$x_{1} = \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
$$x_{2} = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
This roots
$$x_{1} = \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
$$x_{2} = \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
substitute to the expression
$$\cos{\left(x \right)} \leq - \frac{1}{5}$$
$$\cos{\left(\pi n - \frac{1}{10} + \operatorname{acos}{\left(- \frac{1}{5} \right)} \right)} \leq - \frac{1}{5}$$
cos(-1/10 + pi*n + acos(-1/5)) <= -1/5

but
cos(-1/10 + pi*n + acos(-1/5)) >= -1/5

Then
$$x \leq \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
no execute
one of the solutions of our inequality is:
$$x \geq \pi n + \operatorname{acos}{\left(- \frac{1}{5} \right)} \wedge x \leq \pi n - \pi + \operatorname{acos}{\left(- \frac{1}{5} \right)}$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
   /              /    ___\           /    ___\     \
And\x <= pi + atan\2*\/ 6 /, pi - atan\2*\/ 6 / <= x/
$$x \leq \operatorname{atan}{\left(2 \sqrt{6} \right)} + \pi \wedge \pi - \operatorname{atan}{\left(2 \sqrt{6} \right)} \leq x$$
(x <= pi + atan(2*sqrt(6)))∧(pi - atan(2*sqrt(6)) <= x)
Rapid solution 2 [src]
          /    ___\           /    ___\ 
[pi - atan\2*\/ 6 /, pi + atan\2*\/ 6 /]
$$x\ in\ \left[\pi - \operatorname{atan}{\left(2 \sqrt{6} \right)}, \operatorname{atan}{\left(2 \sqrt{6} \right)} + \pi\right]$$
x in Interval(pi - atan(2*sqrt(6)), atan(2*sqrt(6)) + pi)