Given the inequality:
$$\cos{\left(2 x - \frac{3 \pi}{8} \right)} < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(2 x - \frac{3 \pi}{8} \right)} = 0$$
Solve:
Given the equation
$$\cos{\left(2 x - \frac{3 \pi}{8} \right)} = 0$$
- this is the simplest trigonometric equation
with the change of sign in 0
We get:
$$\cos{\left(2 x - \frac{3 \pi}{8} \right)} = 0$$
This equation is transformed to
$$2 x + \frac{\pi}{8} = 2 \pi n + \operatorname{asin}{\left(0 \right)}$$
$$2 x + \frac{\pi}{8} = 2 \pi n - \operatorname{asin}{\left(0 \right)} + \pi$$
Or
$$2 x + \frac{\pi}{8} = 2 \pi n$$
$$2 x + \frac{\pi}{8} = 2 \pi n + \pi$$
, where n - is a integer
Move
$$\frac{\pi}{8}$$
to right part of the equation
with the opposite sign, in total:
$$2 x = 2 \pi n - \frac{\pi}{8}$$
$$2 x = 2 \pi n + \frac{7 \pi}{8}$$
Divide both parts of the equation by
$$2$$
$$x_{1} = \pi n - \frac{\pi}{16}$$
$$x_{2} = \pi n + \frac{7 \pi}{16}$$
$$x_{1} = \pi n - \frac{\pi}{16}$$
$$x_{2} = \pi n + \frac{7 \pi}{16}$$
This roots
$$x_{1} = \pi n - \frac{\pi}{16}$$
$$x_{2} = \pi n + \frac{7 \pi}{16}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n - \frac{\pi}{16}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{\pi}{16} - \frac{1}{10}$$
substitute to the expression
$$\cos{\left(2 x - \frac{3 \pi}{8} \right)} < 0$$
$$\cos{\left(2 \left(\pi n - \frac{\pi}{16} - \frac{1}{10}\right) - \frac{3 \pi}{8} \right)} < 0$$
sin(-1/5 + 2*pi*n) < 0
one of the solutions of our inequality is:
$$x < \pi n - \frac{\pi}{16}$$
_____ _____
\ /
-------ο-------ο-------
x1 x2Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < \pi n - \frac{\pi}{16}$$
$$x > \pi n + \frac{7 \pi}{16}$$