Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • x^2-2*x+12,5>0
  • (x-1)sqrt(x^2-x-2)>=0
  • 5^(1-x)>0,2
  • 0,2^(x+1)<=1/25
  • Canonical form:
  • =0
  • Identical expressions

  • cos^ two (x)- one /2cosx<= zero
  • co sinus of e of squared (x) minus 1 divide by 2 co sinus of e of x less than or equal to 0
  • co sinus of e of to the power of two (x) minus one divide by 2 co sinus of e of x less than or equal to zero
  • cos2(x)-1/2cosx<=0
  • cos2x-1/2cosx<=0
  • cos²(x)-1/2cosx<=0
  • cos to the power of 2(x)-1/2cosx<=0
  • cos^2x-1/2cosx<=0
  • cos^2(x)-1/2cosx<=O
  • cos^2(x)-1 divide by 2cosx<=0
  • Similar expressions

  • cos^2(x)+1/2cosx<=0

cos^2(x)-1/2cosx<=0 inequation

A inequation with variable

The solution

You have entered [src]
   2      cos(x)     
cos (x) - ------ <= 0
            2        
$$\cos^{2}{\left(x \right)} - \frac{\cos{\left(x \right)}}{2} \leq 0$$
cos(x)^2 - cos(x)/2 <= 0
Detail solution
Given the inequality:
$$\cos^{2}{\left(x \right)} - \frac{\cos{\left(x \right)}}{2} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos^{2}{\left(x \right)} - \frac{\cos{\left(x \right)}}{2} = 0$$
Solve:
Given the equation
$$\cos^{2}{\left(x \right)} - \frac{\cos{\left(x \right)}}{2} = 0$$
transform
$$\left(\cos{\left(x \right)} - \frac{1}{2}\right) \cos{\left(x \right)} = 0$$
$$\cos^{2}{\left(x \right)} - \frac{\cos{\left(x \right)}}{2} = 0$$
Do replacement
$$w = \cos{\left(x \right)}$$
This equation is of the form
a*w^2 + b*w + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$w_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$w_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = - \frac{1}{2}$$
$$c = 0$$
, then
D = b^2 - 4 * a * c = 

(-1/2)^2 - 4 * (1) * (0) = 1/4

Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)

w2 = (-b - sqrt(D)) / (2*a)

or
$$w_{1} = \frac{1}{2}$$
$$w_{2} = 0$$
do backward replacement
$$\cos{\left(x \right)} = w$$
Given the equation
$$\cos{\left(x \right)} = w$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(w \right)}$$
$$x = \pi n + \operatorname{acos}{\left(w \right)} - \pi$$
Or
$$x = \pi n + \operatorname{acos}{\left(w \right)}$$
$$x = \pi n + \operatorname{acos}{\left(w \right)} - \pi$$
, where n - is a integer
substitute w:
$$x_{1} = \pi n + \operatorname{acos}{\left(w_{1} \right)}$$
$$x_{1} = \pi n + \operatorname{acos}{\left(\frac{1}{2} \right)}$$
$$x_{1} = \pi n + \frac{\pi}{3}$$
$$x_{2} = \pi n + \operatorname{acos}{\left(w_{2} \right)}$$
$$x_{2} = \pi n + \operatorname{acos}{\left(0 \right)}$$
$$x_{2} = \pi n + \frac{\pi}{2}$$
$$x_{3} = \pi n + \operatorname{acos}{\left(w_{1} \right)} - \pi$$
$$x_{3} = \pi n - \pi + \operatorname{acos}{\left(\frac{1}{2} \right)}$$
$$x_{3} = \pi n - \frac{2 \pi}{3}$$
$$x_{4} = \pi n + \operatorname{acos}{\left(w_{2} \right)} - \pi$$
$$x_{4} = \pi n - \pi + \operatorname{acos}{\left(0 \right)}$$
$$x_{4} = \pi n - \frac{\pi}{2}$$
$$x_{1} = \frac{\pi}{3}$$
$$x_{2} = \frac{\pi}{2}$$
$$x_{3} = \frac{3 \pi}{2}$$
$$x_{4} = \frac{5 \pi}{3}$$
$$x_{1} = \frac{\pi}{3}$$
$$x_{2} = \frac{\pi}{2}$$
$$x_{3} = \frac{3 \pi}{2}$$
$$x_{4} = \frac{5 \pi}{3}$$
This roots
$$x_{1} = \frac{\pi}{3}$$
$$x_{2} = \frac{\pi}{2}$$
$$x_{3} = \frac{3 \pi}{2}$$
$$x_{4} = \frac{5 \pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{\pi}{3}$$
=
$$- \frac{1}{10} + \frac{\pi}{3}$$
substitute to the expression
$$\cos^{2}{\left(x \right)} - \frac{\cos{\left(x \right)}}{2} \leq 0$$
$$- \frac{\cos{\left(- \frac{1}{10} + \frac{\pi}{3} \right)}}{2} + \cos^{2}{\left(- \frac{1}{10} + \frac{\pi}{3} \right)} \leq 0$$
                   /1    pi\     
                sin|-- + --|     
   2/1    pi\      \10   6 / <= 0
sin |-- + --| - ------------     
    \10   6 /        2           

but
                   /1    pi\     
                sin|-- + --|     
   2/1    pi\      \10   6 / >= 0
sin |-- + --| - ------------     
    \10   6 /        2           

Then
$$x \leq \frac{\pi}{3}$$
no execute
one of the solutions of our inequality is:
$$x \geq \frac{\pi}{3} \wedge x \leq \frac{\pi}{2}$$
         _____           _____  
        /     \         /     \  
-------•-------•-------•-------•-------
       x1      x2      x3      x4

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \geq \frac{\pi}{3} \wedge x \leq \frac{\pi}{2}$$
$$x \geq \frac{3 \pi}{2} \wedge x \leq \frac{5 \pi}{3}$$
Solving inequality on a graph
Rapid solution [src]
  /   /pi            pi\     /3*pi            5*pi\\
Or|And|-- <= x, x <= --|, And|---- <= x, x <= ----||
  \   \3             2 /     \ 2               3  //
$$\left(\frac{\pi}{3} \leq x \wedge x \leq \frac{\pi}{2}\right) \vee \left(\frac{3 \pi}{2} \leq x \wedge x \leq \frac{5 \pi}{3}\right)$$
((pi/3 <= x)∧(x <= pi/2))∨((3*pi/2 <= x)∧(x <= 5*pi/3))
Rapid solution 2 [src]
 pi  pi     3*pi  5*pi 
[--, --] U [----, ----]
 3   2       2     3   
$$x\ in\ \left[\frac{\pi}{3}, \frac{\pi}{2}\right] \cup \left[\frac{3 \pi}{2}, \frac{5 \pi}{3}\right]$$
x in Union(Interval(pi/3, pi/2), Interval(3*pi/2, 5*pi/3))