Mister Exam

Other calculators

cos(t)<1/7 inequation

A inequation with variable

The solution

You have entered [src]
cos(t) < 1/7
$$\cos{\left(t \right)} < \frac{1}{7}$$
cos(t) < 1/7
Detail solution
Given the inequality:
$$\cos{\left(t \right)} < \frac{1}{7}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(t \right)} = \frac{1}{7}$$
Solve:
Given the equation
$$\cos{\left(t \right)} = \frac{1}{7}$$
transform
$$\cos{\left(t \right)} - \frac{1}{7} = 0$$
$$\cos{\left(t \right)} - \frac{1}{7} = 0$$
Do replacement
$$w = \cos{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = \frac{1}{7}$$
We get the answer: w = 1/7
do backward replacement
$$\cos{\left(t \right)} = w$$
substitute w:
$$x_{1} = 73.9707749282655$$
$$x_{2} = 120.807969594302$$
$$x_{3} = 51.6929312153262$$
$$x_{4} = 29.9884777780084$$
$$x_{5} = -57.9761165225058$$
$$x_{6} = 83.1088577512241$$
$$x_{7} = -99.1035161569839$$
$$x_{8} = -67.6875896210859$$
$$x_{9} = 92.8203308498043$$
$$x_{10} = -42.5548483923676$$
$$x_{11} = -70.542487136865$$
$$x_{12} = 55.1212190067267$$
$$x_{13} = 17.4221071636492$$
$$x_{14} = 23.7052924708288$$
$$x_{15} = -80.2539602354451$$
$$x_{16} = -55.1212190067267$$
$$x_{17} = -36.271663085188$$
$$x_{18} = 48.8380336995472$$
$$x_{19} = 76.8256724440446$$
$$x_{20} = -29.9884777780084$$
$$x_{21} = -4.85573654929006$$
$$x_{22} = 61.4044043139063$$
$$x_{23} = -89.3920430584037$$
$$x_{24} = 95.6752283655833$$
$$x_{25} = -32.8433752937875$$
$$x_{26} = -45.4097459081466$$
$$x_{27} = 86.5371455426247$$
$$x_{28} = 7.71063406506912$$
$$x_{29} = 4.85573654929006$$
$$x_{30} = -17.4221071636492$$
$$x_{31} = 1.42744875788953$$
$$x_{32} = -26.5601899866079$$
$$x_{33} = -13.9938193722487$$
$$x_{34} = 20.2770046794283$$
$$x_{35} = -83.1088577512241$$
$$x_{36} = -23.7052924708288$$
$$x_{37} = -13252.6652615996$$
$$x_{38} = -7.71063406506912$$
$$x_{39} = -20.2770046794283$$
$$x_{40} = 67.6875896210859$$
$$x_{41} = -92.8203308498043$$
$$x_{42} = -76.8256724440446$$
$$x_{43} = -64.2593018296854$$
$$x_{44} = -51.6929312153262$$
$$x_{45} = 39.1265606009671$$
$$x_{46} = 45.4097459081466$$
$$x_{47} = 36.271663085188$$
$$x_{48} = 89.3920430584037$$
$$x_{49} = 64.2593018296854$$
$$x_{50} = 26.5601899866079$$
$$x_{51} = -1.42744875788953$$
$$x_{52} = -73.9707749282655$$
$$x_{53} = 13.9938193722487$$
$$x_{54} = -11.1389218564696$$
$$x_{55} = -61.4044043139063$$
$$x_{56} = 32.8433752937875$$
$$x_{57} = 99.1035161569839$$
$$x_{58} = -39.1265606009671$$
$$x_{59} = 70.542487136865$$
$$x_{60} = 11.1389218564696$$
$$x_{61} = -86.5371455426247$$
$$x_{62} = -12017630.0530054$$
$$x_{63} = -95.6752283655833$$
$$x_{64} = 42.5548483923676$$
$$x_{65} = 80.2539602354451$$
$$x_{66} = 57.9761165225058$$
$$x_{67} = -48.8380336995472$$
$$x_{1} = 73.9707749282655$$
$$x_{2} = 120.807969594302$$
$$x_{3} = 51.6929312153262$$
$$x_{4} = 29.9884777780084$$
$$x_{5} = -57.9761165225058$$
$$x_{6} = 83.1088577512241$$
$$x_{7} = -99.1035161569839$$
$$x_{8} = -67.6875896210859$$
$$x_{9} = 92.8203308498043$$
$$x_{10} = -42.5548483923676$$
$$x_{11} = -70.542487136865$$
$$x_{12} = 55.1212190067267$$
$$x_{13} = 17.4221071636492$$
$$x_{14} = 23.7052924708288$$
$$x_{15} = -80.2539602354451$$
$$x_{16} = -55.1212190067267$$
$$x_{17} = -36.271663085188$$
$$x_{18} = 48.8380336995472$$
$$x_{19} = 76.8256724440446$$
$$x_{20} = -29.9884777780084$$
$$x_{21} = -4.85573654929006$$
$$x_{22} = 61.4044043139063$$
$$x_{23} = -89.3920430584037$$
$$x_{24} = 95.6752283655833$$
$$x_{25} = -32.8433752937875$$
$$x_{26} = -45.4097459081466$$
$$x_{27} = 86.5371455426247$$
$$x_{28} = 7.71063406506912$$
$$x_{29} = 4.85573654929006$$
$$x_{30} = -17.4221071636492$$
$$x_{31} = 1.42744875788953$$
$$x_{32} = -26.5601899866079$$
$$x_{33} = -13.9938193722487$$
$$x_{34} = 20.2770046794283$$
$$x_{35} = -83.1088577512241$$
$$x_{36} = -23.7052924708288$$
$$x_{37} = -13252.6652615996$$
$$x_{38} = -7.71063406506912$$
$$x_{39} = -20.2770046794283$$
$$x_{40} = 67.6875896210859$$
$$x_{41} = -92.8203308498043$$
$$x_{42} = -76.8256724440446$$
$$x_{43} = -64.2593018296854$$
$$x_{44} = -51.6929312153262$$
$$x_{45} = 39.1265606009671$$
$$x_{46} = 45.4097459081466$$
$$x_{47} = 36.271663085188$$
$$x_{48} = 89.3920430584037$$
$$x_{49} = 64.2593018296854$$
$$x_{50} = 26.5601899866079$$
$$x_{51} = -1.42744875788953$$
$$x_{52} = -73.9707749282655$$
$$x_{53} = 13.9938193722487$$
$$x_{54} = -11.1389218564696$$
$$x_{55} = -61.4044043139063$$
$$x_{56} = 32.8433752937875$$
$$x_{57} = 99.1035161569839$$
$$x_{58} = -39.1265606009671$$
$$x_{59} = 70.542487136865$$
$$x_{60} = 11.1389218564696$$
$$x_{61} = -86.5371455426247$$
$$x_{62} = -12017630.0530054$$
$$x_{63} = -95.6752283655833$$
$$x_{64} = 42.5548483923676$$
$$x_{65} = 80.2539602354451$$
$$x_{66} = 57.9761165225058$$
$$x_{67} = -48.8380336995472$$
This roots
$$x_{62} = -12017630.0530054$$
$$x_{37} = -13252.6652615996$$
$$x_{7} = -99.1035161569839$$
$$x_{63} = -95.6752283655833$$
$$x_{41} = -92.8203308498043$$
$$x_{23} = -89.3920430584037$$
$$x_{61} = -86.5371455426247$$
$$x_{35} = -83.1088577512241$$
$$x_{15} = -80.2539602354451$$
$$x_{42} = -76.8256724440446$$
$$x_{52} = -73.9707749282655$$
$$x_{11} = -70.542487136865$$
$$x_{8} = -67.6875896210859$$
$$x_{43} = -64.2593018296854$$
$$x_{55} = -61.4044043139063$$
$$x_{5} = -57.9761165225058$$
$$x_{16} = -55.1212190067267$$
$$x_{44} = -51.6929312153262$$
$$x_{67} = -48.8380336995472$$
$$x_{26} = -45.4097459081466$$
$$x_{10} = -42.5548483923676$$
$$x_{58} = -39.1265606009671$$
$$x_{17} = -36.271663085188$$
$$x_{25} = -32.8433752937875$$
$$x_{20} = -29.9884777780084$$
$$x_{32} = -26.5601899866079$$
$$x_{36} = -23.7052924708288$$
$$x_{39} = -20.2770046794283$$
$$x_{30} = -17.4221071636492$$
$$x_{33} = -13.9938193722487$$
$$x_{54} = -11.1389218564696$$
$$x_{38} = -7.71063406506912$$
$$x_{21} = -4.85573654929006$$
$$x_{51} = -1.42744875788953$$
$$x_{31} = 1.42744875788953$$
$$x_{29} = 4.85573654929006$$
$$x_{28} = 7.71063406506912$$
$$x_{60} = 11.1389218564696$$
$$x_{53} = 13.9938193722487$$
$$x_{13} = 17.4221071636492$$
$$x_{34} = 20.2770046794283$$
$$x_{14} = 23.7052924708288$$
$$x_{50} = 26.5601899866079$$
$$x_{4} = 29.9884777780084$$
$$x_{56} = 32.8433752937875$$
$$x_{47} = 36.271663085188$$
$$x_{45} = 39.1265606009671$$
$$x_{64} = 42.5548483923676$$
$$x_{46} = 45.4097459081466$$
$$x_{18} = 48.8380336995472$$
$$x_{3} = 51.6929312153262$$
$$x_{12} = 55.1212190067267$$
$$x_{66} = 57.9761165225058$$
$$x_{22} = 61.4044043139063$$
$$x_{49} = 64.2593018296854$$
$$x_{40} = 67.6875896210859$$
$$x_{59} = 70.542487136865$$
$$x_{1} = 73.9707749282655$$
$$x_{19} = 76.8256724440446$$
$$x_{65} = 80.2539602354451$$
$$x_{6} = 83.1088577512241$$
$$x_{27} = 86.5371455426247$$
$$x_{48} = 89.3920430584037$$
$$x_{9} = 92.8203308498043$$
$$x_{24} = 95.6752283655833$$
$$x_{57} = 99.1035161569839$$
$$x_{2} = 120.807969594302$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{62}$$
For example, let's take the point
$$x_{0} = x_{62} - \frac{1}{10}$$
=
$$-12017630.0530054 + - \frac{1}{10}$$
=
$$-12017630.1530054$$
substitute to the expression
$$\cos{\left(t \right)} < \frac{1}{7}$$
$$\cos{\left(t \right)} < \frac{1}{7}$$
cos(t) < 1/7

Then
$$x < -12017630.0530054$$
no execute
one of the solutions of our inequality is:
$$x > -12017630.0530054 \wedge x < -13252.6652615996$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x62      x37      x7      x63      x41      x23      x61      x35      x15      x42      x52      x11      x8      x43      x55      x5      x16      x44      x67      x26      x10      x58      x17      x25      x20      x32      x36      x39      x30      x33      x54      x38      x21      x51      x31      x29      x28      x60      x53      x13      x34      x14      x50      x4      x56      x47      x45      x64      x46      x18      x3      x12      x66      x22      x49      x40      x59      x1      x19      x65      x6      x27      x48      x9      x24      x57      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -12017630.0530054 \wedge x < -13252.6652615996$$
$$x > -99.1035161569839 \wedge x < -95.6752283655833$$
$$x > -92.8203308498043 \wedge x < -89.3920430584037$$
$$x > -86.5371455426247 \wedge x < -83.1088577512241$$
$$x > -80.2539602354451 \wedge x < -76.8256724440446$$
$$x > -73.9707749282655 \wedge x < -70.542487136865$$
$$x > -67.6875896210859 \wedge x < -64.2593018296854$$
$$x > -61.4044043139063 \wedge x < -57.9761165225058$$
$$x > -55.1212190067267 \wedge x < -51.6929312153262$$
$$x > -48.8380336995472 \wedge x < -45.4097459081466$$
$$x > -42.5548483923676 \wedge x < -39.1265606009671$$
$$x > -36.271663085188 \wedge x < -32.8433752937875$$
$$x > -29.9884777780084 \wedge x < -26.5601899866079$$
$$x > -23.7052924708288 \wedge x < -20.2770046794283$$
$$x > -17.4221071636492 \wedge x < -13.9938193722487$$
$$x > -11.1389218564696 \wedge x < -7.71063406506912$$
$$x > -4.85573654929006 \wedge x < -1.42744875788953$$
$$x > 1.42744875788953 \wedge x < 4.85573654929006$$
$$x > 7.71063406506912 \wedge x < 11.1389218564696$$
$$x > 13.9938193722487 \wedge x < 17.4221071636492$$
$$x > 20.2770046794283 \wedge x < 23.7052924708288$$
$$x > 26.5601899866079 \wedge x < 29.9884777780084$$
$$x > 32.8433752937875 \wedge x < 36.271663085188$$
$$x > 39.1265606009671 \wedge x < 42.5548483923676$$
$$x > 45.4097459081466 \wedge x < 48.8380336995472$$
$$x > 51.6929312153262 \wedge x < 55.1212190067267$$
$$x > 57.9761165225058 \wedge x < 61.4044043139063$$
$$x > 64.2593018296854 \wedge x < 67.6875896210859$$
$$x > 70.542487136865 \wedge x < 73.9707749282655$$
$$x > 76.8256724440446 \wedge x < 80.2539602354451$$
$$x > 83.1088577512241 \wedge x < 86.5371455426247$$
$$x > 89.3920430584037 \wedge x < 92.8203308498043$$
$$x > 95.6752283655833 \wedge x < 99.1035161569839$$
$$x > 120.807969594302$$
Rapid solution [src]
   /          /    ___\             /    ___\    \
And\t < - atan\4*\/ 3 / + 2*pi, atan\4*\/ 3 / < t/
$$t < - \operatorname{atan}{\left(4 \sqrt{3} \right)} + 2 \pi \wedge \operatorname{atan}{\left(4 \sqrt{3} \right)} < t$$
(atan(4*sqrt(3)) < t)∧(t < -atan(4*sqrt(3)) + 2*pi)
Rapid solution 2 [src]
     /    ___\        /    ___\        
(atan\4*\/ 3 /, - atan\4*\/ 3 / + 2*pi)
$$x\ in\ \left(\operatorname{atan}{\left(4 \sqrt{3} \right)}, - \operatorname{atan}{\left(4 \sqrt{3} \right)} + 2 \pi\right)$$
x in Interval.open(atan(4*sqrt(3)), -atan(4*sqrt(3)) + 2*pi)