Mister Exam

cos(8x)>0 inequation

A inequation with variable

The solution

You have entered [src]
cos(8*x) > 0
$$\cos{\left(8 x \right)} > 0$$
cos(8*x) > 0
Detail solution
Given the inequality:
$$\cos{\left(8 x \right)} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(8 x \right)} = 0$$
Solve:
Given the equation
$$\cos{\left(8 x \right)} = 0$$
- this is the simplest trigonometric equation
with the change of sign in 0

We get:
$$\cos{\left(8 x \right)} = 0$$
This equation is transformed to
$$8 x = \pi n + \operatorname{acos}{\left(0 \right)}$$
$$8 x = \pi n - \pi + \operatorname{acos}{\left(0 \right)}$$
Or
$$8 x = \pi n + \frac{\pi}{2}$$
$$8 x = \pi n - \frac{\pi}{2}$$
, where n - is a integer
Divide both parts of the equation by
$$8$$
$$x_{1} = \frac{\pi n}{8} + \frac{\pi}{16}$$
$$x_{2} = \frac{\pi n}{8} - \frac{\pi}{16}$$
$$x_{1} = \frac{\pi n}{8} + \frac{\pi}{16}$$
$$x_{2} = \frac{\pi n}{8} - \frac{\pi}{16}$$
This roots
$$x_{1} = \frac{\pi n}{8} + \frac{\pi}{16}$$
$$x_{2} = \frac{\pi n}{8} - \frac{\pi}{16}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{8} + \frac{\pi}{16}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{8} - \frac{1}{10} + \frac{\pi}{16}$$
substitute to the expression
$$\cos{\left(8 x \right)} > 0$$
$$\cos{\left(8 \left(\frac{\pi n}{8} - \frac{1}{10} + \frac{\pi}{16}\right) \right)} > 0$$
-sin(-4/5 + pi*n) > 0

Then
$$x < \frac{\pi n}{8} + \frac{\pi}{16}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{\pi n}{8} + \frac{\pi}{16} \wedge x < \frac{\pi n}{8} - \frac{\pi}{16}$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
  /                                                                           /            /      /   ___________              ___________        \                                 \    \\
  |   /               /      /   /pi\\                                 \\     |            |      |  /       ___     /pi\     /       ___     /pi\|                                 |    ||
  |   |               |      |sin|--||      /    _____________________\||     |            |      |\/  2 + \/ 2  *sin|--| + \/  2 - \/ 2  *cos|--||      /    _____________________\|    ||
  |   |               |      |   \16/|      |   /    2/pi\      2/pi\ |||     |     pi     |      |                  \16/                     \16/|      |   /    2/pi\      2/pi\ ||    ||
Or|And|0 <= x, x < -I*|I*atan|-------| + log|  /  cos |--| + sin |--| |||, And|x <= --, -I*|I*atan|-----------------------------------------------| + log|  /  cos |--| + sin |--| || < x||
  |   |               |      |   /pi\|      \\/       \16/       \16/ /||     |     4      |      |   ___________              ___________        |      \\/       \16/       \16/ /|    ||
  |   |               |      |cos|--||                                 ||     |            |      |  /       ___     /pi\     /       ___     /pi\|                                 |    ||
  |   \               \      \   \16//                                 //     |            |      |\/  2 + \/ 2  *cos|--| - \/  2 - \/ 2  *sin|--||                                 |    ||
  \                                                                           \            \      \                  \16/                     \16//                                 /    //
$$\left(0 \leq x \wedge x < - i \left(\log{\left(\sqrt{\sin^{2}{\left(\frac{\pi}{16} \right)} + \cos^{2}{\left(\frac{\pi}{16} \right)}} \right)} + i \operatorname{atan}{\left(\frac{\sin{\left(\frac{\pi}{16} \right)}}{\cos{\left(\frac{\pi}{16} \right)}} \right)}\right)\right) \vee \left(x \leq \frac{\pi}{4} \wedge - i \left(\log{\left(\sqrt{\sin^{2}{\left(\frac{\pi}{16} \right)} + \cos^{2}{\left(\frac{\pi}{16} \right)}} \right)} + i \operatorname{atan}{\left(\frac{\sqrt{\sqrt{2} + 2} \sin{\left(\frac{\pi}{16} \right)} + \sqrt{2 - \sqrt{2}} \cos{\left(\frac{\pi}{16} \right)}}{- \sqrt{2 - \sqrt{2}} \sin{\left(\frac{\pi}{16} \right)} + \sqrt{\sqrt{2} + 2} \cos{\left(\frac{\pi}{16} \right)}} \right)}\right) < x\right)$$
((0 <= x)∧(x < -i*(i*atan(sin(pi/16)/cos(pi/16)) + log(sqrt(cos(pi/16)^2 + sin(pi/16)^2)))))∨((x <= pi/4)∧(-i*(i*atan((sqrt(2 + sqrt(2))*sin(pi/16) + sqrt(2 - sqrt(2))*cos(pi/16))/(sqrt(2 + sqrt(2))*cos(pi/16) - sqrt(2 - sqrt(2))*sin(pi/16))) + log(sqrt(cos(pi/16)^2 + sin(pi/16)^2))) < x))