Given the inequality:
$$\cos{\left(8 x \right)} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(8 x \right)} = 0$$
Solve:
Given the equation
$$\cos{\left(8 x \right)} = 0$$
- this is the simplest trigonometric equation
with the change of sign in 0
We get:
$$\cos{\left(8 x \right)} = 0$$
This equation is transformed to
$$8 x = \pi n + \operatorname{acos}{\left(0 \right)}$$
$$8 x = \pi n - \pi + \operatorname{acos}{\left(0 \right)}$$
Or
$$8 x = \pi n + \frac{\pi}{2}$$
$$8 x = \pi n - \frac{\pi}{2}$$
, where n - is a integer
Divide both parts of the equation by
$$8$$
$$x_{1} = \frac{\pi n}{8} + \frac{\pi}{16}$$
$$x_{2} = \frac{\pi n}{8} - \frac{\pi}{16}$$
$$x_{1} = \frac{\pi n}{8} + \frac{\pi}{16}$$
$$x_{2} = \frac{\pi n}{8} - \frac{\pi}{16}$$
This roots
$$x_{1} = \frac{\pi n}{8} + \frac{\pi}{16}$$
$$x_{2} = \frac{\pi n}{8} - \frac{\pi}{16}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{8} + \frac{\pi}{16}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{8} - \frac{1}{10} + \frac{\pi}{16}$$
substitute to the expression
$$\cos{\left(8 x \right)} > 0$$
$$\cos{\left(8 \left(\frac{\pi n}{8} - \frac{1}{10} + \frac{\pi}{16}\right) \right)} > 0$$
-sin(-4/5 + pi*n) > 0
Then
$$x < \frac{\pi n}{8} + \frac{\pi}{16}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{\pi n}{8} + \frac{\pi}{16} \wedge x < \frac{\pi n}{8} - \frac{\pi}{16}$$
_____
/ \
-------ο-------ο-------
x1 x2