Mister Exam

Other calculators

arctgx<=п/3 inequation

A inequation with variable

The solution

You have entered [src]
           pi
acot(x) <= --
           3 
$$\operatorname{acot}{\left(x \right)} \leq \frac{\pi}{3}$$
acot(x) <= pi/3
Detail solution
Given the inequality:
$$\operatorname{acot}{\left(x \right)} \leq \frac{\pi}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\operatorname{acot}{\left(x \right)} = \frac{\pi}{3}$$
Solve:
$$x_{1} = \frac{\sqrt{3}}{3}$$
$$x_{1} = \frac{\sqrt{3}}{3}$$
This roots
$$x_{1} = \frac{\sqrt{3}}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{\sqrt{3}}{3}$$
=
$$- \frac{1}{10} + \frac{\sqrt{3}}{3}$$
substitute to the expression
$$\operatorname{acot}{\left(x \right)} \leq \frac{\pi}{3}$$
$$\operatorname{acot}{\left(- \frac{1}{10} + \frac{\sqrt{3}}{3} \right)} \leq \frac{\pi}{3}$$
     /       ___\      
     |1    \/ 3 |    pi
-acot|-- - -----| <= --
     \10     3  /    3 
      

but
     /       ___\      
     |1    \/ 3 |    pi
-acot|-- - -----| >= --
     \10     3  /    3 
      

Then
$$x \leq \frac{\sqrt{3}}{3}$$
no execute
the solution of our inequality is:
$$x \geq \frac{\sqrt{3}}{3}$$
         _____  
        /
-------•-------
       x1
Rapid solution [src]
  ___     
\/ 3      
----- <= x
  3       
$$\frac{\sqrt{3}}{3} \leq x$$
sqrt(3)/3 <= x
Rapid solution 2 [src]
   ___     
 \/ 3      
[-----, oo)
   3       
$$x\ in\ \left[\frac{\sqrt{3}}{3}, \infty\right)$$
x in Interval(sqrt(3)/3, oo)