Given the inequality:
$$\operatorname{acot}{\left(x \right)} \leq \frac{\pi}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\operatorname{acot}{\left(x \right)} = \frac{\pi}{3}$$
Solve:
$$x_{1} = \frac{\sqrt{3}}{3}$$
$$x_{1} = \frac{\sqrt{3}}{3}$$
This roots
$$x_{1} = \frac{\sqrt{3}}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{\sqrt{3}}{3}$$
=
$$- \frac{1}{10} + \frac{\sqrt{3}}{3}$$
substitute to the expression
$$\operatorname{acot}{\left(x \right)} \leq \frac{\pi}{3}$$
$$\operatorname{acot}{\left(- \frac{1}{10} + \frac{\sqrt{3}}{3} \right)} \leq \frac{\pi}{3}$$
/ ___\
|1 \/ 3 | pi
-acot|-- - -----| <= --
\10 3 / 3
but
/ ___\
|1 \/ 3 | pi
-acot|-- - -----| >= --
\10 3 / 3
Then
$$x \leq \frac{\sqrt{3}}{3}$$
no execute
the solution of our inequality is:
$$x \geq \frac{\sqrt{3}}{3}$$
_____
/
-------•-------
x1