Given the inequality:
$$\operatorname{acos}{\left(x - 2 \right)} < \frac{\pi}{4}$$
To solve this inequality, we must first solve the corresponding equation:
$$\operatorname{acos}{\left(x - 2 \right)} = \frac{\pi}{4}$$
Solve:
$$x_{1} = \frac{\sqrt{2}}{2} + 2$$
$$x_{1} = \frac{\sqrt{2}}{2} + 2$$
This roots
$$x_{1} = \frac{\sqrt{2}}{2} + 2$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{\sqrt{2}}{2} + 2\right)$$
=
$$\frac{\sqrt{2}}{2} + \frac{19}{10}$$
substitute to the expression
$$\operatorname{acos}{\left(x - 2 \right)} < \frac{\pi}{4}$$
$$\operatorname{acos}{\left(-2 + \left(\frac{\sqrt{2}}{2} + \frac{19}{10}\right) \right)} < \frac{\pi}{4}$$
/ ___\
| 1 \/ 2 | pi
acos|- -- + -----| < --
\ 10 2 / 4
but
/ ___\
| 1 \/ 2 | pi
acos|- -- + -----| > --
\ 10 2 / 4
Then
$$x < \frac{\sqrt{2}}{2} + 2$$
no execute
the solution of our inequality is:
$$x > \frac{\sqrt{2}}{2} + 2$$
_____
/
-------ο-------
x1