Mister Exam

abs(ln(x+e))<1 inequation

A inequation with variable

The solution

You have entered [src]
|log(x + E)| < 1
$$\left|{\log{\left(x + e \right)}}\right| < 1$$
Abs(log(x + E)) < 1
Detail solution
Given the inequality:
$$\left|{\log{\left(x + e \right)}}\right| < 1$$
To solve this inequality, we must first solve the corresponding equation:
$$\left|{\log{\left(x + e \right)}}\right| = 1$$
Solve:
$$x_{1} = 0$$
$$x_{2} = -2.3504023872876$$
$$x_{1} = 0$$
$$x_{2} = -2.3504023872876$$
This roots
$$x_{2} = -2.3504023872876$$
$$x_{1} = 0$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$-2.3504023872876 + - \frac{1}{10}$$
=
$$-2.4504023872876$$
substitute to the expression
$$\left|{\log{\left(x + e \right)}}\right| < 1$$
$$\left|{\log{\left(-2.4504023872876 + e \right)}}\right| < 1$$
-log(-(2.4504023872876 - E)) < 1

but
-log(-(2.4504023872876 - E)) > 1

Then
$$x < -2.3504023872876$$
no execute
one of the solutions of our inequality is:
$$x > -2.3504023872876 \wedge x < 0$$
         _____  
        /     \  
-------ο-------ο-------
       x2      x1
Solving inequality on a graph
Rapid solution [src]
   /             -1    \
And\x < 0, -E + e   < x/
$$x < 0 \wedge - e + e^{-1} < x$$
(x < 0)∧(-E + exp(-1) < x)
Rapid solution 2 [src]
       -1    
(-E + e  , 0)
$$x\ in\ \left(- e + e^{-1}, 0\right)$$
x in Interval.open(-E + exp(-1), 0)