Mister Exam

Other calculators

9x²+36x-108>0 inequation

A inequation with variable

The solution

You have entered [src]
   2                 
9*x  + 36*x - 108 > 0
(9x2+36x)108>0\left(9 x^{2} + 36 x\right) - 108 > 0
9*x^2 + 36*x - 108 > 0
Detail solution
Given the inequality:
(9x2+36x)108>0\left(9 x^{2} + 36 x\right) - 108 > 0
To solve this inequality, we must first solve the corresponding equation:
(9x2+36x)108=0\left(9 x^{2} + 36 x\right) - 108 = 0
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=9a = 9
b=36b = 36
c=108c = -108
, then
D = b^2 - 4 * a * c = 

(36)^2 - 4 * (9) * (-108) = 5184

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=2x_{1} = 2
x2=6x_{2} = -6
x1=2x_{1} = 2
x2=6x_{2} = -6
x1=2x_{1} = 2
x2=6x_{2} = -6
This roots
x2=6x_{2} = -6
x1=2x_{1} = 2
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x2x_{0} < x_{2}
For example, let's take the point
x0=x2110x_{0} = x_{2} - \frac{1}{10}
=
6+110-6 + - \frac{1}{10}
=
6110- \frac{61}{10}
substitute to the expression
(9x2+36x)108>0\left(9 x^{2} + 36 x\right) - 108 > 0
108+((61)3610+9(6110)2)>0-108 + \left(\frac{\left(-61\right) 36}{10} + 9 \left(- \frac{61}{10}\right)^{2}\right) > 0
729    
--- > 0
100    

one of the solutions of our inequality is:
x<6x < -6
 _____           _____          
      \         /
-------ο-------ο-------
       x2      x1

Other solutions will get with the changeover to the next point
etc.
The answer:
x<6x < -6
x>2x > 2
Rapid solution [src]
Or(And(-oo < x, x < -6), And(2 < x, x < oo))
(<xx<6)(2<xx<)\left(-\infty < x \wedge x < -6\right) \vee \left(2 < x \wedge x < \infty\right)
((-oo < x)∧(x < -6))∨((2 < x)∧(x < oo))
Rapid solution 2 [src]
(-oo, -6) U (2, oo)
x in (,6)(2,)x\ in\ \left(-\infty, -6\right) \cup \left(2, \infty\right)
x in Union(Interval.open(-oo, -6), Interval.open(2, oo))