Mister Exam

Other calculators

3x/4+1/3x≤-9/2 inequation

A inequation with variable

The solution

You have entered [src]
3*x   x        
--- + - <= -9/2
 4    3        
$$\frac{x}{3} + \frac{3 x}{4} \leq - \frac{9}{2}$$
x/3 + (3*x)/4 <= -9/2
Detail solution
Given the inequality:
$$\frac{x}{3} + \frac{3 x}{4} \leq - \frac{9}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{x}{3} + \frac{3 x}{4} = - \frac{9}{2}$$
Solve:
Given the linear equation:
3*x/4+1/3*x = -9/2

Looking for similar summands in the left part:
13*x/12 = -9/2

Divide both parts of the equation by 13/12
x = -9/2 / (13/12)

$$x_{1} = - \frac{54}{13}$$
$$x_{1} = - \frac{54}{13}$$
This roots
$$x_{1} = - \frac{54}{13}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{54}{13} + - \frac{1}{10}$$
=
$$- \frac{553}{130}$$
substitute to the expression
$$\frac{x}{3} + \frac{3 x}{4} \leq - \frac{9}{2}$$
$$\frac{\left(- \frac{553}{130}\right) 3}{4} + \frac{-553}{3 \cdot 130} \leq - \frac{9}{2}$$
-553         
----- <= -9/2
 120         

the solution of our inequality is:
$$x \leq - \frac{54}{13}$$
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
Rapid solution [src]
   /     -54          \
And|x <= ----, -oo < x|
   \      13          /
$$x \leq - \frac{54}{13} \wedge -\infty < x$$
(x <= -54/13)∧(-oo < x)
Rapid solution 2 [src]
      -54  
(-oo, ----]
       13  
$$x\ in\ \left(-\infty, - \frac{54}{13}\right]$$
x in Interval(-oo, -54/13)