Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 3^x>7*2^x
  • (x+10)*1/2>x-2
  • -7x^2+5x-2<0
  • (x+1)/x-(x-1)/(x+1)<2
  • Identical expressions

  • 2sin^2x−sinx− three < zero
  • 2 sinus of squared x− sinus of x−3 less than 0
  • 2 sinus of squared x− sinus of x− three less than zero
  • 2sin2x−sinx−3<0
  • 2sin²x−sinx−3<0
  • 2sin to the power of 2x−sinx−3<0

2sin^2x−sinx−3<0 inequation

A inequation with variable

The solution

You have entered [src]
     2                    
2*sin (x) - sin(x) - 3 < 0
$$\left(2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 3 < 0$$
2*sin(x)^2 - sin(x) - 3 < 0
Detail solution
Given the inequality:
$$\left(2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 3 < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 3 = 0$$
Solve:
Given the equation
$$\left(2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 3 = 0$$
transform
$$2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)} - 3 = 0$$
$$\left(2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 3 = 0$$
Do replacement
$$w = \sin{\left(x \right)}$$
This equation is of the form
a*w^2 + b*w + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$w_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$w_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 2$$
$$b = -1$$
$$c = -3$$
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (2) * (-3) = 25

Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)

w2 = (-b - sqrt(D)) / (2*a)

or
$$w_{1} = \frac{3}{2}$$
$$w_{2} = -1$$
do backward replacement
$$\sin{\left(x \right)} = w$$
Given the equation
$$\sin{\left(x \right)} = w$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(w \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi$$
Or
$$x = 2 \pi n + \operatorname{asin}{\left(w \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi$$
, where n - is a integer
substitute w:
$$x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}$$
$$x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{3}{2} \right)}$$
$$x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{3}{2} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(-1 \right)}$$
$$x_{2} = 2 \pi n - \frac{\pi}{2}$$
$$x_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi$$
$$x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{3}{2} \right)}$$
$$x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{3}{2} \right)}$$
$$x_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi$$
$$x_{4} = 2 \pi n - \operatorname{asin}{\left(-1 \right)} + \pi$$
$$x_{4} = 2 \pi n + \frac{3 \pi}{2}$$
$$x_{1} = - \frac{\pi}{2}$$
$$x_{2} = \frac{3 \pi}{2}$$
$$x_{3} = \pi - \operatorname{asin}{\left(\frac{3}{2} \right)}$$
$$x_{4} = \operatorname{asin}{\left(\frac{3}{2} \right)}$$
Exclude the complex solutions:
$$x_{1} = - \frac{\pi}{2}$$
$$x_{2} = \frac{3 \pi}{2}$$
This roots
$$x_{1} = - \frac{\pi}{2}$$
$$x_{2} = \frac{3 \pi}{2}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\pi}{2} - \frac{1}{10}$$
=
$$- \frac{\pi}{2} - \frac{1}{10}$$
substitute to the expression
$$\left(2 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 3 < 0$$
$$-3 + \left(- \sin{\left(- \frac{\pi}{2} - \frac{1}{10} \right)} + 2 \sin^{2}{\left(- \frac{\pi}{2} - \frac{1}{10} \right)}\right) < 0$$
          2                      
-3 + 2*cos (1/10) + cos(1/10) < 0
    

one of the solutions of our inequality is:
$$x < - \frac{\pi}{2}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < - \frac{\pi}{2}$$
$$x > \frac{3 \pi}{2}$$
Solving inequality on a graph
Rapid solution 2 [src]
    3*pi     3*pi       
[0, ----) U (----, 2*pi]
     2        2         
$$x\ in\ \left[0, \frac{3 \pi}{2}\right) \cup \left(\frac{3 \pi}{2}, 2 \pi\right]$$
x in Union(Interval.Ropen(0, 3*pi/2), Interval.Lopen(3*pi/2, 2*pi))
Rapid solution [src]
  /   /            3*pi\     /           3*pi    \\
Or|And|0 <= x, x < ----|, And|x <= 2*pi, ---- < x||
  \   \             2  /     \            2      //
$$\left(0 \leq x \wedge x < \frac{3 \pi}{2}\right) \vee \left(x \leq 2 \pi \wedge \frac{3 \pi}{2} < x\right)$$
((0 <= x)∧(x < 3*pi/2))∨((x <= 2*pi)∧(3*pi/2 < x))