Given the inequality:
$$2 \cos{\left(x \right)} - 1 \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$2 \cos{\left(x \right)} - 1 = 0$$
Solve:
Given the equation
$$2 \cos{\left(x \right)} - 1 = 0$$
- this is the simplest trigonometric equation
Move -1 to right part of the equation
with the change of sign in -1
We get:
$$2 \cos{\left(x \right)} = 1$$
Divide both parts of the equation by 2
The equation is transformed to
$$\cos{\left(x \right)} = \frac{1}{2}$$
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(\frac{1}{2} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(\frac{1}{2} \right)}$$
Or
$$x = \pi n + \frac{\pi}{3}$$
$$x = \pi n - \frac{2 \pi}{3}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{3}$$
$$x_{2} = \pi n - \frac{2 \pi}{3}$$
$$x_{1} = \pi n + \frac{\pi}{3}$$
$$x_{2} = \pi n - \frac{2 \pi}{3}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{3}$$
$$x_{2} = \pi n - \frac{2 \pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{3}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{3}$$
substitute to the expression
$$2 \cos{\left(x \right)} - 1 \geq 0$$
$$2 \cos{\left(\pi n - \frac{1}{10} + \frac{\pi}{3} \right)} - 1 \geq 0$$
/ 1 pi \
-1 + 2*cos|- -- + -- + pi*n| >= 0
\ 10 3 / but
/ 1 pi \
-1 + 2*cos|- -- + -- + pi*n| < 0
\ 10 3 / Then
$$x \leq \pi n + \frac{\pi}{3}$$
no execute
one of the solutions of our inequality is:
$$x \geq \pi n + \frac{\pi}{3} \wedge x \leq \pi n - \frac{2 \pi}{3}$$
_____
/ \
-------•-------•-------
x1 x2