Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • x^3-12x x^3-12x
  • x/(x^2+1)
  • x^3+3x
  • x^2(x-2)^2
  • Identical expressions

  • (two π‘₯+ one)𝑒^ three ^π‘₯^2βˆ’4π‘₯+ one
  • (2π‘₯ plus 1)𝑒 cubed to the power of π‘₯ squared βˆ’4π‘₯ plus 1
  • (two π‘₯ plus one)𝑒 to the power of three to the power of π‘₯ squared βˆ’4π‘₯ plus one
  • (2π‘₯+1)𝑒3π‘₯2βˆ’4π‘₯+1
  • 2π‘₯+1𝑒3π‘₯2βˆ’4π‘₯+1
  • (2π‘₯+1)𝑒³^π‘₯Β²βˆ’4π‘₯+1
  • (2π‘₯+1)𝑒 to the power of 3 to the power of π‘₯ to the power of 2βˆ’4π‘₯+1
  • 2π‘₯+1𝑒^3^π‘₯^2βˆ’4π‘₯+1
  • Similar expressions

  • (2π‘₯-1)𝑒^3^π‘₯^2βˆ’4π‘₯+1
  • (2π‘₯+1)𝑒^3^π‘₯^2βˆ’4π‘₯-1

Graphing y = (2π‘₯+1)𝑒^3^π‘₯^2βˆ’4π‘₯+1

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
                  / / 2\\          
                  | \x /|          
                  \3    /          
f(x) = (2*x + 1)*E        - 4*x + 1
$$f{\left(x \right)} = \left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1$$
f = E^(3^(x^2))*(2*x + 1) - 4*x + 1
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (2*x + 1)*E^(3^(x^2)) - 4*x + 1.
$$1 + \left(- 0 + e^{3^{0^{2}}} \left(0 \cdot 2 + 1\right)\right)$$
The result:
$$f{\left(0 \right)} = 1 + e$$
The point:
(0, 1 + E)
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1\right) = -\infty$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1\right) = \infty$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (2*x + 1)*E^(3^(x^2)) - 4*x + 1, divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1}{x}\right) = \infty$$
Let's take the limit
so,
inclined asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\frac{\left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1}{x}\right) = \infty$$
Let's take the limit
so,
inclined asymptote on the right doesn’t exist
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) ΠΈ f = -f(-x).
So, check:
$$\left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1 = 4 x + \left(1 - 2 x\right) e^{3^{x^{2}}} + 1$$
- No
$$\left(e^{3^{x^{2}}} \left(2 x + 1\right) - 4 x\right) + 1 = - 4 x - \left(1 - 2 x\right) e^{3^{x^{2}}} - 1$$
- No
so, the function
not is
neither even, nor odd