Mister Exam

Express x in terms of y where lnx^y=ln1

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   y            
log (x) = log(1)
$$\log{\left(x \right)}^{y} = \log{\left(1 \right)}$$
Rapid solution [src]
                       /y ___\        /y ___\               
        /  /y ___\\  re\\/ 0 /      re\\/ 0 /    /  /y ___\\
x1 = cos\im\\/ 0 //*e          + I*e         *sin\im\\/ 0 //
$$x_{1} = i e^{\operatorname{re}{\left(0^{\frac{1}{y}}\right)}} \sin{\left(\operatorname{im}{\left(0^{\frac{1}{y}}\right)} \right)} + e^{\operatorname{re}{\left(0^{\frac{1}{y}}\right)}} \cos{\left(\operatorname{im}{\left(0^{\frac{1}{y}}\right)} \right)}$$
x1 = i*exp(re(0^(1/y)))*sin(im(0^(1/y))) + exp(re(0^(1/y)))*cos(im(0^(1/y)))