0,008^x=5^1-2x equation
The teacher will be very surprised to see your correct solution 😉
The solution
The graph
/ / ___\\
| | 3*\/ 5 ||
| | -------||
| | 781250||
2*W\-log\5 // + log(30517578125)
x1 = --------------------------------------
6*log(5)
x1=6log(5)2W(−log(578125035))+log(30517578125)
/ / ___\ \
| | 3*\/ 5 | |
| | -------| |
| | 781250| |
2*W\-log\5 /, -1/ + log(30517578125)
x2 = ------------------------------------------
6*log(5)
x2=6log(5)2W−1(−log(578125035))+log(30517578125)
x2 = (2*LambertW(-log(5^(3*sqrt(5)/781250), -1) + log(30517578125))/(6*log(5)))
Sum and product of roots
[src]
/ / ___\\ / / ___\ \
| | 3*\/ 5 || | | 3*\/ 5 | |
| | -------|| | | -------| |
| | 781250|| | | 781250| |
2*W\-log\5 // + log(30517578125) 2*W\-log\5 /, -1/ + log(30517578125)
-------------------------------------- + ------------------------------------------
6*log(5) 6*log(5)
6log(5)2W−1(−log(578125035))+log(30517578125)+6log(5)2W(−log(578125035))+log(30517578125)
/ / ___\\ / / ___\ \
| | 3*\/ 5 || | | 3*\/ 5 | |
| | -------|| | | -------| |
| | 781250|| | | 781250| |
2*W\-log\5 // + log(30517578125) 2*W\-log\5 /, -1/ + log(30517578125)
-------------------------------------- + ------------------------------------------
6*log(5) 6*log(5)
6log(5)2W−1(−log(578125035))+log(30517578125)+6log(5)2W(−log(578125035))+log(30517578125)
/ / ___\\ / / ___\ \
| | 3*\/ 5 || | | 3*\/ 5 | |
| | -------|| | | -------| |
| | 781250|| | | 781250| |
2*W\-log\5 // + log(30517578125) 2*W\-log\5 /, -1/ + log(30517578125)
--------------------------------------*------------------------------------------
6*log(5) 6*log(5)
6log(5)2W(−log(578125035))+log(30517578125)6log(5)2W−1(−log(578125035))+log(30517578125)
/ / / ___\\ \ / / / ___\ \ \
| | | 3*\/ 5 || | | | | 3*\/ 5 | | |
| | | -------|| | | | | -------| | |
| | | 781250|| | | | | 781250| | |
\2*W\-log\5 // + log(30517578125)/*\2*W\-log\5 /, -1/ + log(30517578125)/
-------------------------------------------------------------------------------------
2
36*log (5)
36log(5)2(2W(−log(578125035))+log(30517578125))(2W−1(−log(578125035))+log(30517578125))
(2*LambertW(-log(5^(3*sqrt(5)/781250))) + log(30517578125))*(2*LambertW(-log(5^(3*sqrt(5)/781250)), -1) + log(30517578125))/(36*log(5)^2)