Mister Exam

Other calculators

0,008^x=5^1-2x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   -x          
125   = 5 - 2*x
$$\left(\frac{1}{125}\right)^{x} = 5 - 2 x$$
The graph
Rapid solution [src]
        /    /     ___\\                   
        |    | 3*\/ 5 ||                   
        |    | -------||                   
        |    |  781250||                   
     2*W\-log\5       // + log(30517578125)
x1 = --------------------------------------
                    6*log(5)               
$$x_{1} = \frac{2 W\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}}$$
        /    /     ___\    \                   
        |    | 3*\/ 5 |    |                   
        |    | -------|    |                   
        |    |  781250|    |                   
     2*W\-log\5       /, -1/ + log(30517578125)
x2 = ------------------------------------------
                      6*log(5)                 
$$x_{2} = \frac{2 W_{-1}\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}}$$
x2 = (2*LambertW(-log(5^(3*sqrt(5)/781250), -1) + log(30517578125))/(6*log(5)))
Sum and product of roots [src]
sum
   /    /     ___\\                         /    /     ___\    \                   
   |    | 3*\/ 5 ||                         |    | 3*\/ 5 |    |                   
   |    | -------||                         |    | -------|    |                   
   |    |  781250||                         |    |  781250|    |                   
2*W\-log\5       // + log(30517578125)   2*W\-log\5       /, -1/ + log(30517578125)
-------------------------------------- + ------------------------------------------
               6*log(5)                                   6*log(5)                 
$$\frac{2 W_{-1}\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}} + \frac{2 W\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}}$$
=
   /    /     ___\\                         /    /     ___\    \                   
   |    | 3*\/ 5 ||                         |    | 3*\/ 5 |    |                   
   |    | -------||                         |    | -------|    |                   
   |    |  781250||                         |    |  781250|    |                   
2*W\-log\5       // + log(30517578125)   2*W\-log\5       /, -1/ + log(30517578125)
-------------------------------------- + ------------------------------------------
               6*log(5)                                   6*log(5)                 
$$\frac{2 W_{-1}\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}} + \frac{2 W\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}}$$
product
   /    /     ___\\                       /    /     ___\    \                   
   |    | 3*\/ 5 ||                       |    | 3*\/ 5 |    |                   
   |    | -------||                       |    | -------|    |                   
   |    |  781250||                       |    |  781250|    |                   
2*W\-log\5       // + log(30517578125) 2*W\-log\5       /, -1/ + log(30517578125)
--------------------------------------*------------------------------------------
               6*log(5)                                 6*log(5)                 
$$\frac{2 W\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}} \frac{2 W_{-1}\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}}{6 \log{\left(5 \right)}}$$
=
/   /    /     ___\\                   \ /   /    /     ___\    \                   \
|   |    | 3*\/ 5 ||                   | |   |    | 3*\/ 5 |    |                   |
|   |    | -------||                   | |   |    | -------|    |                   |
|   |    |  781250||                   | |   |    |  781250|    |                   |
\2*W\-log\5       // + log(30517578125)/*\2*W\-log\5       /, -1/ + log(30517578125)/
-------------------------------------------------------------------------------------
                                            2                                        
                                      36*log (5)                                     
$$\frac{\left(2 W\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}\right) \left(2 W_{-1}\left(- \log{\left(5^{\frac{3 \sqrt{5}}{781250}} \right)}\right) + \log{\left(30517578125 \right)}\right)}{36 \log{\left(5 \right)}^{2}}$$
(2*LambertW(-log(5^(3*sqrt(5)/781250))) + log(30517578125))*(2*LambertW(-log(5^(3*sqrt(5)/781250)), -1) + log(30517578125))/(36*log(5)^2)
Numerical answer [src]
x1 = 2.49999713779343
x2 = -0.361289616528727
x2 = -0.361289616528727