Mister Exam

Other calculators

0,35x+0,6y=210*0,4 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
7*x   3*y   2*210
--- + --- = -----
 20    5      5  
$$\frac{7 x}{20} + \frac{3 y}{5} = \frac{2 \cdot 210}{5}$$
Detail solution
Given the linear equation:
(7/20)*x+(3/5)*y = 210*(2/5)

Expand brackets in the left part
7/20x+3/5y = 210*(2/5)

Expand brackets in the right part
7/20x+3/5y = 210*2/5

Looking for similar summands in the left part:
3*y/5 + 7*x/20 = 210*2/5

Move the summands with the other variables
from left part to right part, we given:
$$\frac{7 x}{20} = 84 - \frac{3 y}{5}$$
Divide both parts of the equation by 7/20
x = 84 - 3*y/5 / (7/20)

We get the answer: x = 240 - 12*y/7
The graph
Rapid solution [src]
           12*re(y)   12*I*im(y)
x1 = 240 - -------- - ----------
              7           7     
$$x_{1} = - \frac{12 \operatorname{re}{\left(y\right)}}{7} - \frac{12 i \operatorname{im}{\left(y\right)}}{7} + 240$$
x1 = -12*re(y)/7 - 12*i*im(y)/7 + 240
Sum and product of roots [src]
sum
      12*re(y)   12*I*im(y)
240 - -------- - ----------
         7           7     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{7} - \frac{12 i \operatorname{im}{\left(y\right)}}{7} + 240$$
=
      12*re(y)   12*I*im(y)
240 - -------- - ----------
         7           7     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{7} - \frac{12 i \operatorname{im}{\left(y\right)}}{7} + 240$$
product
      12*re(y)   12*I*im(y)
240 - -------- - ----------
         7           7     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{7} - \frac{12 i \operatorname{im}{\left(y\right)}}{7} + 240$$
=
      12*re(y)   12*I*im(y)
240 - -------- - ----------
         7           7     
$$- \frac{12 \operatorname{re}{\left(y\right)}}{7} - \frac{12 i \operatorname{im}{\left(y\right)}}{7} + 240$$
240 - 12*re(y)/7 - 12*i*im(y)/7