Mister Exam

Other calculators


z^4+16=0

z^4+16=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4         
z  + 16 = 0
$$z^{4} + 16 = 0$$
Detail solution
Given the equation
$$z^{4} + 16 = 0$$
Because equation degree is equal to = 4 and the free term = -16 < 0,
so the real solutions of the equation d'not exist

All other 4 root(s) is the complex numbers.
do replacement:
$$w = z$$
then the equation will be the:
$$w^{4} = -16$$
Any complex number can presented so:
$$w = r e^{i p}$$
substitute to the equation
$$r^{4} e^{4 i p} = -16$$
where
$$r = 2$$
- the magnitude of the complex number
Substitute r:
$$e^{4 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(4 p \right)} + \cos{\left(4 p \right)} = -1$$
so
$$\cos{\left(4 p \right)} = -1$$
and
$$\sin{\left(4 p \right)} = 0$$
then
$$p = \frac{\pi N}{2} + \frac{\pi}{4}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
$$w_{1} = - \sqrt{2} - \sqrt{2} i$$
$$w_{2} = - \sqrt{2} + \sqrt{2} i$$
$$w_{3} = \sqrt{2} - \sqrt{2} i$$
$$w_{4} = \sqrt{2} + \sqrt{2} i$$
do backward replacement
$$w = z$$
$$z = w$$

The final answer:
$$z_{1} = - \sqrt{2} - \sqrt{2} i$$
$$z_{2} = - \sqrt{2} + \sqrt{2} i$$
$$z_{3} = \sqrt{2} - \sqrt{2} i$$
$$z_{4} = \sqrt{2} + \sqrt{2} i$$
The graph
Rapid solution [src]
         ___       ___
z1 = - \/ 2  - I*\/ 2 
$$z_{1} = - \sqrt{2} - \sqrt{2} i$$
         ___       ___
z2 = - \/ 2  + I*\/ 2 
$$z_{2} = - \sqrt{2} + \sqrt{2} i$$
       ___       ___
z3 = \/ 2  - I*\/ 2 
$$z_{3} = \sqrt{2} - \sqrt{2} i$$
       ___       ___
z4 = \/ 2  + I*\/ 2 
$$z_{4} = \sqrt{2} + \sqrt{2} i$$
z4 = sqrt(2) + sqrt(2)*i
Sum and product of roots [src]
sum
    ___       ___       ___       ___     ___       ___     ___       ___
- \/ 2  - I*\/ 2  + - \/ 2  + I*\/ 2  + \/ 2  - I*\/ 2  + \/ 2  + I*\/ 2 
$$\left(\left(\sqrt{2} - \sqrt{2} i\right) + \left(\left(- \sqrt{2} - \sqrt{2} i\right) + \left(- \sqrt{2} + \sqrt{2} i\right)\right)\right) + \left(\sqrt{2} + \sqrt{2} i\right)$$
=
0
$$0$$
product
/    ___       ___\ /    ___       ___\ /  ___       ___\ /  ___       ___\
\- \/ 2  - I*\/ 2 /*\- \/ 2  + I*\/ 2 /*\\/ 2  - I*\/ 2 /*\\/ 2  + I*\/ 2 /
$$\left(- \sqrt{2} - \sqrt{2} i\right) \left(- \sqrt{2} + \sqrt{2} i\right) \left(\sqrt{2} - \sqrt{2} i\right) \left(\sqrt{2} + \sqrt{2} i\right)$$
=
16
$$16$$
16
Numerical answer [src]
z1 = -1.4142135623731 - 1.4142135623731*i
z2 = 1.4142135623731 - 1.4142135623731*i
z3 = -1.4142135623731 + 1.4142135623731*i
z4 = 1.4142135623731 + 1.4142135623731*i
z4 = 1.4142135623731 + 1.4142135623731*i
The graph
z^4+16=0 equation