y-5y+6y=(x-1)2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
y-5*y+6*y = (x-1)*2
Expand brackets in the right part
y-5*y+6*y = x*2-1*2
Looking for similar summands in the left part:
2*y = x*2-1*2
Move the summands with the unknown x
from the right part to the left part:
$$- 2 x + 2 y = -2$$
Divide both parts of the equation by (-2*x + 2*y)/x
x = -2 / ((-2*x + 2*y)/x)
We get the answer: x = 1 + y
$$x_{1} = \operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
Sum and product of roots
[src]
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$