Mister Exam

Other calculators

y-5y+6y=(x-1)2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
y - 5*y + 6*y = (x - 1)*2
$$6 y + \left(- 5 y + y\right) = 2 \left(x - 1\right)$$
Detail solution
Given the linear equation:
y-5*y+6*y = (x-1)*2

Expand brackets in the right part
y-5*y+6*y = x*2-1*2

Looking for similar summands in the left part:
2*y = x*2-1*2

Move the summands with the unknown x
from the right part to the left part:
$$- 2 x + 2 y = -2$$
Divide both parts of the equation by (-2*x + 2*y)/x
x = -2 / ((-2*x + 2*y)/x)

We get the answer: x = 1 + y
The graph
Rapid solution [src]
x1 = 1 + I*im(y) + re(y)
$$x_{1} = \operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
x1 = re(y) + i*im(y) + 1
Sum and product of roots [src]
sum
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
=
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
product
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
=
1 + I*im(y) + re(y)
$$\operatorname{re}{\left(y\right)} + i \operatorname{im}{\left(y\right)} + 1$$
1 + i*im(y) + re(y)