x(y+1)2=243y equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
x*(y+1)*2 = 243*y
Expand brackets in the left part
xy*2+1*2 = 243*y
Divide both parts of the equation by 2 + 2*y
x = 243*y / (2 + 2*y)
We get the answer: x = 243*y/(2*(1 + y))
The solution of the parametric equation
Given the equation with a parameter:
2x(y+1)=243yКоэффициент при x равен
2y+2then possible cases for y :
y<−1y=−1Consider all cases in more detail:
With
y<−1the equation
486−2x=0its solution
x=243With
y=−1the equation
243=0its solution
no solutions
/ y \ / y \
243*re|-----| 243*I*im|-----|
\1 + y/ \1 + y/
x1 = ------------- + ---------------
2 2
x1=2243re(y+1y)+2243iim(y+1y)
x1 = 243*re(y/(y + 1))/2 + 243*i*im(y/(y + 1))/2
Sum and product of roots
[src]
/ y \ / y \
243*re|-----| 243*I*im|-----|
\1 + y/ \1 + y/
------------- + ---------------
2 2
2243re(y+1y)+2243iim(y+1y)
/ y \ / y \
243*re|-----| 243*I*im|-----|
\1 + y/ \1 + y/
------------- + ---------------
2 2
2243re(y+1y)+2243iim(y+1y)
/ y \ / y \
243*re|-----| 243*I*im|-----|
\1 + y/ \1 + y/
------------- + ---------------
2 2
2243re(y+1y)+2243iim(y+1y)
/ y \ / y \
243*re|-----| 243*I*im|-----|
\1 + y/ \1 + y/
------------- + ---------------
2 2
2243re(y+1y)+2243iim(y+1y)
243*re(y/(1 + y))/2 + 243*i*im(y/(1 + y))/2