Mister Exam

Other calculators

x^y-y^x=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 y    x    
x  - y  = 0
$$x^{y} - y^{x} = 0$$
The graph
Rapid solution [src]
         /   /-log(y) \\       /   /-log(y) \\
         |y*W|--------||       |y*W|--------||
         |   \   y    /|       |   \   y    /|
x1 = - re|-------------| - I*im|-------------|
         \    log(y)   /       \    log(y)   /
$$x_{1} = - \operatorname{re}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)} - i \operatorname{im}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)}$$
x1 = -re(y*LambertW(-log(y)/y)/log(y)) - i*im(y*LambertW(-log(y)/y)/log(y))
Sum and product of roots [src]
sum
    /   /-log(y) \\       /   /-log(y) \\
    |y*W|--------||       |y*W|--------||
    |   \   y    /|       |   \   y    /|
- re|-------------| - I*im|-------------|
    \    log(y)   /       \    log(y)   /
$$- \operatorname{re}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)} - i \operatorname{im}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)}$$
=
    /   /-log(y) \\       /   /-log(y) \\
    |y*W|--------||       |y*W|--------||
    |   \   y    /|       |   \   y    /|
- re|-------------| - I*im|-------------|
    \    log(y)   /       \    log(y)   /
$$- \operatorname{re}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)} - i \operatorname{im}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)}$$
product
    /   /-log(y) \\       /   /-log(y) \\
    |y*W|--------||       |y*W|--------||
    |   \   y    /|       |   \   y    /|
- re|-------------| - I*im|-------------|
    \    log(y)   /       \    log(y)   /
$$- \operatorname{re}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)} - i \operatorname{im}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)}$$
=
    /   /-log(y) \\       /   /-log(y) \\
    |y*W|--------||       |y*W|--------||
    |   \   y    /|       |   \   y    /|
- re|-------------| - I*im|-------------|
    \    log(y)   /       \    log(y)   /
$$- \operatorname{re}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)} - i \operatorname{im}{\left(\frac{y W\left(- \frac{\log{\left(y \right)}}{y}\right)}{\log{\left(y \right)}}\right)}$$
-re(y*LambertW(-log(y)/y)/log(y)) - i*im(y*LambertW(-log(y)/y)/log(y))